7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How Safe is Chicken Litter for Land Application as an Organic Fertilizer?: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chicken litter application on land as an organic fertilizer is the cheapest and most environmentally safe method of disposing of the volume generated from the rapidly expanding poultry industry worldwide. However, little is known about the safety of chicken litter for land application and general release into the environment. Bridging this knowledge gap is crucial for maximizing the benefits of chicken litter as an organic fertilizer and mitigating negative impacts on human and environmental health. The key safety concerns of chicken litter are its contamination with pathogens, including bacteria, fungi, helminthes, parasitic protozoa, and viruses; antibiotics and antibiotic-resistant genes; growth hormones such as egg and meat boosters; heavy metals; and pesticides. Despite the paucity of literature about chicken litter safety for land application, the existing information was scattered and disjointed in various sources, thus making them not easily accessible and difficult to interpret. We consolidated scattered pieces of information about known contaminants found in chicken litter that are of potential risk to human, animal, and environmental health and how they are spread. This review tested the hypothesis that in its current form, chicken litter does not meet the minimum standards for application as organic fertilizer. The review entails a meta-analysis of technical reports, conference proceedings, peer-reviewed journal articles, and internet texts. Our findings indicate that direct land application of chicken litter could be harming animal, human, and environmental health. For example, counts of pathogenic strains of Eschericia coli (10 5–10 10 CFU g −1) and Coliform bacteria (10 6–10 8 CFU g −1) exceeded the maximum permissible limits (MPLs) for land application. In Australia, 100% of broiler litter tested was contaminated with Actinobacillus and re-used broiler litter was more contaminated with Salmonella than non-re-used broiler litter. Similarly, in the US, all (100%) broiler litter was contaminated with Eschericia coli containing genes resistant to over seven antibiotics, particularly amoxicillin, ceftiofur, tetracycline, and sulfonamide. Chicken litter is also contaminated with a vast array of antibiotics and heavy metals. There are no standards set specifically for chicken litter for most of its known contaminants. Even where standards exist for related products such as compost, there is wide variation across countries and bodies mandated to set standards for safe disposal of organic wastes. More rigorous studies are needed to ascertain the level of contamination in chicken litter from both broilers and layers, especially in developing countries where there is hardly any data; set standards for all the contaminants; and standardize these standards across all agencies, for safe disposal of chicken litter on land.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste.

          Antibiotics are used in animal livestock production for therapeutic treatment of disease and at subtherapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occurs among gastrointestinal bacteria, which are also excreted in manure and stored in waste holding systems. Land application of animal waste is a common disposal method used in the United States and is a means for environmental entry of both antibiotics and genetic resistance determinants. Concerns for bacterial resistance gene selection and dissemination of resistance genes have prompted interest about the concentrations and biological activity of drug residues and break-down metabolites, and their fate and transport. Fecal bacteria can survive for weeks to months in the environment, depending on species and temperature, however, genetic elements can persist regardless of cell viability. Phylogenetic analyses indicate antibiotic resistance genes have evolved, although some genes have been maintained in bacteria before the modern antibiotic era. Quantitative measurements of drug residues and levels of resistance genes are needed, in addition to understanding the environmental mechanisms of genetic selection, gene acquisition, and the spatiotemporal dynamics of these resistance genes and their bacterial hosts. This review article discusses an accumulation of findings that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Pharmaceutical antibiotic compounds in soils – a review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocrine disruption in wildlife: a critical review of the evidence.

              In recent years, a number of man-made chemicals have been shown to be able to mimic endogenous hormones, and it has been hypothesized that alterations in the normal pattern of reproductive development seen in some populations of wildlife are linked with exposure to these chemicals. Of particular importance are those compounds that mimic estrogens and androgens (and their antagonists), because of their central role in reproductive function. In fact, the evidence showing that such chemicals actually do mimic (or antagonize) the action of hormones in the intact animal is limited. In only a few cases have laboratory studies shown that chemicals that mimic hormones at the molecular level (in vitro) also cause reproductive dysfunction in vivo at environmentally relevant concentrations. In addition, the reported studies on wild populations of animals are limited to a very few animal species and they have often centered on localized 'hot-spots' of chemical discharges. Nevertheless, many of these xenobiotics are persistent and accumulate in the environment, and therefore a more widespread phenomenon of endocrine disruption in wildlife is possible. This article reviews the evidence, from both laboratory and field studies, that exposure to steroid hormone mimics may impair reproductive function and critically assesses the weight of evidence for endocrine disruption in wildlife.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                20 September 2019
                October 2019
                : 16
                : 19
                : 3521
                Affiliations
                [1 ]Department of Agriculture, Kyambogo University, P.O. Box 1, Kyambogo, Kampala 759125, Uganda
                [2 ]Department of Agricultural Production, School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala 759125, Uganda; giregono@ 123456gmail.com (G.O.); amodinga@ 123456yahoo.com (A.A.); twahaateenyi@ 123456gmail.com (T.A.B.)
                [3 ]Department of Soil and Water Sciences, University of Florida, 2181 McCarty Hall, P.O. Box 110290, Gainesville, FL 32601-0290, USA; kizza@ 123456ufl.edu
                Author notes
                Article
                ijerph-16-03521
                10.3390/ijerph16193521
                6801513
                31547196
                8e2f6e98-afca-4a78-b444-0ca506e07351
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 August 2019
                : 26 August 2019
                Categories
                Review

                Public health
                antibiotic residues,chicken litter contaminants,growth hormones,heavy metals,human,animal and environmental health,pathogenic microorganisms

                Comments

                Comment on this article