52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Xq28 (MECP2) microdeletions are common in mutation-negative females with Rett syndrome and cause mild subtypes of the disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rett syndrome (RTT) is an X-linked neurodevelopmental disease affecting predominantly females caused by MECP2 mutations. Although RTT is classically considered a monogenic disease, a stable proportion of patients, who do not exhibit MECP2 sequence variations, does exist. Here, we have attempted at uncovering genetic causes underlying the disorder in mutation-negative cases by whole genome analysis using array comparative genomic hybridization (CGH) and a bioinformatic approach.

          Results

          Using BAC and oligonucleotide array CGH, 39 patients from RTT Russian cohort (in total, 354 RTT patients), who did not bear intragenic MECP2 mutations, were studied. Among the individuals studied, 12 patients were those with classic RTT and 27 were those with atypical RTT. We have detected five 99.4 kb deletions in chromosome Xq28 affecting MECP2 associated with mild manifestations of classic RTT and five deletions encompassing MECP2 spanning 502.428 kb (three cases), 539.545 kb (one case) and 877.444 kb (one case) associated with mild atypical RTT. A case has demonstrated somatic mosaicism. Regardless of RTT type and deletion size, all the cases exhibited mild phenotypes.

          Conclusions

          Our data indicate for the first time that no fewer than 25% of RTT cases without detectable MECP2 mutations are caused by Xq28 microdeletions. Furthermore, Xq28 ( MECP2) deletions are likely to cause mild subtypes of the disease, which can manifest as both classical and atypical RTT.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

          Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in autism genetics: on the threshold of a new neurobiology.

            Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome.

              Rett syndrome (RTT) is an inherited neurodevelopmental disorder of females that occurs once in 10,000-15,000 births. Affected females develop normally for 6-18 months, but then lose voluntary movements, including speech and hand skills. Most RTT patients are heterozygous for mutations in the X-linked gene MECP2 (refs. 3-12), encoding a protein that binds to methylated sites in genomic DNA and facilitates gene silencing. Previous work with Mecp2-null embryonic stem cells indicated that MeCP2 is essential for mouse embryogenesis. Here we generate mice lacking Mecp2 using Cre-loxP technology. Both Mecp2-null mice and mice in which Mecp2 was deleted in brain showed severe neurological symptoms at approximately six weeks of age. Compensation for absence of MeCP2 in other tissues by MeCP1 (refs. 19,20) was not apparent in genetic or biochemical tests. After several months, heterozygous female mice also showed behavioral symptoms. The overlapping delay before symptom onset in humans and mice, despite their profoundly different rates of development, raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Cytogenet
                Mol Cytogenet
                Molecular Cytogenetics
                BioMed Central
                1755-8166
                2013
                27 November 2013
                : 6
                : 53
                Affiliations
                [1 ]Mental Health Research Center, Russian Academy of Medical Sciences, Moscow 117152, Russia
                [2 ]Institute of Pediatrics and Children Surgery, Ministry of Health of the Russian Federation, Moscow 125412, Russia
                [3 ]Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow 123995, Russia
                [4 ]Moscow City University of Psychology and Education, Moscow 127051, Russia
                Article
                1755-8166-6-53
                10.1186/1755-8166-6-53
                4176196
                24283533
                8efb4818-0152-40b9-b2e9-60cb34c8200f
                Copyright © 2013 Iourov et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 15 November 2013
                : 19 November 2013
                Categories
                Research

                Genetics
                array cgh,autistic spectrum disorder,chromosome x,female,mecp2,rett syndrome,xq28 microdeletion
                Genetics
                array cgh, autistic spectrum disorder, chromosome x, female, mecp2, rett syndrome, xq28 microdeletion

                Comments

                Comment on this article