40
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence of Rickettsiales in ticks removed from the skin of outdoor workers in North Carolina

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tick-transmitted rickettsial diseases, such as ehrlichiosis and spotted fever rickettsiosis, are significant sources of morbidity and mortality in the southern United States. Because of their exposure in tick-infested woodlands, outdoor workers experience an increased risk of infection with tick-borne pathogens. As part of a double blind randomized-controlled field trial of the effectiveness of permethrin-treated clothing in preventing tick bites, we identified tick species removed from the skin of outdoor workers in North Carolina and tested the ticks for Rickettsiales pathogens.

          Methods

          Ticks submitted by study participants from April-September 2011 and 2012 were identified to species and life stage, and preliminarily screened for the genus Rickettsia by nested PCR targeting the 17-kDa protein gene. Rickettsia were further identified to species by PCR amplification of 23S-5S intergenic spacer (IGS) fragments combined with reverse line blot hybridization with species-specific probes and through cloning and nucleotide sequence analysis of 23S-5S amplicons. Ticks were examined for Ehrlichia and Anaplasma by nested PCR directed at the gltA, antigen-expressing gene containing a variable number of tandem repeats, 16S rRNA, and groESL genes.

          Results

          The lone star tick ( Amblyomma americanum) accounted for 95.0 and 92.9% of ticks submitted in 2011 ( n = 423) and 2012 ( n = 451), respectively. Specimens of American dog tick ( Dermacentor variabilis), Gulf Coast tick ( Amblyomma maculatum) and black-legged tick ( Ixodes scapularis) were also identified. In both years of our study, 60.9% of ticks tested positive for 17-kDa. “ Candidatus Rickettsia amblyommii”, identified in all four tick species, accounted for 90.2% (416/461) of the 23S-5S-positive samples and 52.9% (416/787) of all samples tested. Nucleotide sequence analysis of Rickettsia-specific 23S-5S IGS, ompA and gltA gene fragments indicated that ticks, principally A. americanum, contained novel species of Rickettsia. Other Rickettsiales, including Ehrlichia ewingii, E. chaffeensis, Ehrlichia sp. (Panola Mountain), and Anaplasma phagocytophilum, were infrequently identified, principally in A. americanum.

          Conclusions

          We conclude that in North Carolina, the most common rickettsial exposure is to R. amblyommii carried by A. americanum. Other Rickettsiales bacteria, including novel species of Rickettsia, were less frequently detected in A. americanum but are relevant to public health nevertheless.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13071-014-0607-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.

          S. KUMAR (2004)
          With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States.

            Ticks, including many that bite humans, are hosts to several obligate intracellular bacteria in the spotted fever group (SFG) of the genus Rickettsia. Only Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, has been definitively associated with disease in humans in the United States. Herein we describe disease in a human caused by Rickettsia parkeri, an SFG rickettsia first identified >60 years ago in Gulf Coast ticks (Amblyomma maculatum) collected from the southern United States. Confirmation of the infection was accomplished using serological testing, immunohistochemical staining, cell culture isolation, and molecular methods. Application of specific laboratory assays to clinical specimens obtained from patients with febrile, eschar-associated illnesses following a tick bite may identify additional cases of R. parkeri rickettsiosis and possibly other novel SFG rickettsioses in the United States.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis.

              Human ehrlichiosis is a recently recognized tick-borne infection. Four species infect humans: Ehrlichia chaffeensis, E. sennetsu, E. canis, and the agent of human granulocytic ehrlichiosis. We tested peripheral-blood leukocytes from 413 patients with possible ehrlichiosis by broad-range and species-specific polymerase-chain-reaction (PCR) assays for ehrlichia. The species present were identified by species-specific PCR assays and nucleotide sequencing of the gene encoding ehrlichia 16S ribosomal RNA. Western blot analysis was used to study serologic responses. In four patients, ehrlichia DNA was detected in leukocytes by a broad-range PCR assay, but not by assays specific for E. chaffeensis or the agent of human granulocytic ehrlichiosis. The nucleotide sequences of these PCR products matched that of E. ewingii, an agent previously reported as a cause of granulocytic ehrlichiosis in dogs. These four patients, all from Missouri, presented between May and August 1996, 1997, or 1998 with fever, headache, and thrombocytopenia, with or without leukopenia. All had been exposed to ticks, and three were receiving immunosuppressive therapy. Serum samples obtained from three of these patients during convalescence contained antibodies that reacted with E. chaffeensis and E. canis antigens in a pattern different from that of humans with E. chaffeensis infection but similar to that of a dog experimentally infected with E. ewingii. Morulae were identified in neutrophils from two patients. All four patients were successfully treated with doxycycline. These findings provide evidence of E. ewingii infection in humans. The associated disease may be clinically indistinguishable from infection caused by E. chaffeensis or the agent of human granulocytic ehrlichiosis.
                Bookmark

                Author and article information

                Contributors
                slee19@ncsu.edu
                mlkakuma@ncsu.edu
                loganathan_ponnusamy@ncsu.edu
                vaughn.meagan@gmail.com
                sheana@nc.rr.com
                hethornt@ncsu.edu
                meshnick@email.unc.edu
                apperson@ncsu.edu
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                23 December 2014
                23 December 2014
                2014
                : 7
                : 1
                : 607
                Affiliations
                [ ]Department of Entomology, North Carolina State University, Campus Box 7647, Raleigh, NC 27695-7647 USA
                [ ]Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 USA
                [ ]Present address: National Institutes of Health, Bethesda, MD 20892 USA
                Article
                607
                10.1186/s13071-014-0607-2
                4301950
                25533148
                8eff60d3-e0bd-44e4-b9ef-10ba678d942a
                © Lee et al.; licensee BioMed Central. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 November 2014
                : 16 December 2014
                Categories
                Research
                Custom metadata
                © The Author(s) 2014

                Parasitology
                ticks,rickettsiales pathogens,rickettsia,ehrlichia,reverse line blot hybridization
                Parasitology
                ticks, rickettsiales pathogens, rickettsia, ehrlichia, reverse line blot hybridization

                Comments

                Comment on this article