30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mutation of the Mouse Syce1 Gene Disrupts Synapsis and Suggests a Link between Synaptonemal Complex Structural Components and DNA Repair

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination.

          Author Summary

          Production of sperm and eggs, also known as gametes, requires a reduction in the number of copies of the genome, from the two found in most cells of the body to the single copy found in gametes. This is a complex process, made even more complex because it is coupled with recombination, a process that is an important contributor to genetic diversity. Mammals and many other organisms achieve reduction and recombination through a process called meiosis, which is recognisable by the presence of a distinctive structure—the synaptonemal complex—that links the chromosomes together and is essential for meiosis to complete. We have made mice that lack SYCE1, a protein component of the synaptonemal complex. In these animals, meiosis is blocked at a particular stage, and this has allowed us to detect co-localisation and interactions—likely indirect—between enzymes involved in recombination and structural proteins involved in meiosis. This provides a starting point to understand in biochemical detail the protein links between structure and function in meiosis. Mutations or variants in the genes encoding such proteins are likely contributors to variations in fertility and to abnormalities in chromosome number.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The mouse Spo11 gene is required for meiotic chromosome synapsis.

          The Spo11 protein initiates meiotic recombination by generating DNA double-strand breaks (DSBs) and is required for meiotic synapsis in S. cerevisiae. Surprisingly, Spo11 homologs are dispensable for synapsis in C. elegans and Drosophila yet required for meiotic recombination. Disruption of mouse Spo11 results in infertility. Spermatocytes arrest prior to pachytene with little or no synapsis and undergo apoptosis. We did not detect Rad51/Dmc1 foci in meiotic chromosome spreads, indicating DSBs are not formed. Cisplatin-induced DSBs restored Rad51/Dmc1 foci and promoted synapsis. Spo11 localizes to discrete foci during leptotene and to homologously synapsed chromosomes. Other mouse mutants that arrest during meiotic prophase (Atm -/-, Dmc1 -/-, mei1, and Morc(-/-)) showed altered Spo11 protein localization and expression. We speculate that there is an additional role for Spo11, after it generates DSBs, in synapsis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11.

            Spo11, a protein first identified in yeast, is thought to generate the chromosome breaks that initiate meiotic recombination. We now report that disruption of mouse Spo11 leads to severe gonadal abnormalities from defective meiosis. Spermatocytes suffer apoptotic death during early prophase; oocytes reach the diplotene/dictyate stage in nearly normal numbers, but most die soon after birth. Consistent with a conserved function in initiating meiotic recombination, Dmc1/Rad51 focus formation is abolished. Spo11(-/-) meiocytes also display homologous chromosome synapsis defects, similar to fungi but distinct from flies and nematodes. We propose that recombination initiation precedes and is required for normal synapsis in mammals. Our results also support the view that mammalian checkpoint responses to meiotic recombination and/or synapsis defects are sexually dimorphic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination.

              We identify a novel meiotic recombination intermediate, the single-end invasion (SEI), which occurs during the transition from double-strand breaks (DSBs) to double-Holliday junction (dHJs). SEIs are products of strand exchange between one DSB end and its homolog. The structural asymmetry of SEIs indicates that the two ends of a DSB interact with the homolog in temporal succession, via structurally (and thus biochemically) distinct processes. SEIs arise surprisingly late in prophase, concomitant with synaptonemal complex (SC) formation. These and other data imply that SEIs are preceded by nascent DSB-partner intermediates, which then undergo selective differentiation into crossover and noncrossover types, with SC formation and strand exchange as downstream consequences. Late occurrence of strand exchange provides opportunity to reverse recombinational fate even after homologs are coaligned and/or synapsed. This feature can explain crossover suppression between homeologous and structurally heterozygous chromosomes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2009
                February 2009
                27 February 2009
                : 5
                : 2
                : e1000393
                Affiliations
                [1 ]MRC Human Genetics Unit and Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
                [2 ]Institute of Human Genetics, Centre National de la Recherche Scientifique, UPR1142, Montpellier, France
                [3 ]Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, Würzburg, Germany
                National Cancer Institute, United States of America
                Author notes

                Conceived and designed the experiments: EBF HJC. Performed the experiments: EBF RS MT RB. Analyzed the data: EBF HJC. Contributed reagents/materials/analysis tools: CG BdM. Wrote the paper: EBF HJC. Revised the manuscript: CG BdM RB.

                Article
                08-PLGE-RA-1103R3
                10.1371/journal.pgen.1000393
                2640461
                19247432
                8f5a32aa-18b5-4bbd-903e-153abe6f0c09
                Bolcun-Filas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 August 2008
                : 27 January 2009
                Page count
                Pages: 10
                Categories
                Research Article
                Cell Biology
                Developmental Biology/Germ Cells
                Genetics and Genomics/Chromosome Biology

                Genetics
                Genetics

                Comments

                Comment on this article