30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Abnormalities Underlying Bone Fragility in Chronic Kidney Disease

      review-article
      1 , 2 , 3 , *
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prevention of bone fractures is one goal of therapy for patients with chronic kidney disease-mineral and bone disorder (CKD-MBD), as indicated by the Kidney Disease: Improving Global Outcomes guidelines. CKD patients, including those on hemodialysis, are at higher risk for fractures and fracture-related death compared to people with normal kidney function. However, few clinicians focus on this issue as it is very difficult to estimate bone fragility. Additionally, uremia-related bone fragility has a more complicated pathological process compared to osteoporosis. There are many uremia-associated factors that contribute to bone fragility, including severe secondary hyperparathyroidism, skeletal resistance to parathyroid hormone, and bone mineralization disorders. Uremia also aggravates bone volume loss, disarranges microarchitecture, and increases the deterioration of material properties of bone through abnormal bone cells or excess oxidative stress. In this review, we outline the prevalence of fractures, the interaction of CKD-MBD with osteoporosis in CKD patients, and discuss possible factors that exacerbate the mechanical properties of bone.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research.

          Bisphosphonates (BPs) and denosumab reduce the risk of spine and nonspine fractures. Atypical femur fractures (AFFs) located in the subtrochanteric region and diaphysis of the femur have been reported in patients taking BPs and in patients on denosumab, but they also occur in patients with no exposure to these drugs. In this report, we review studies on the epidemiology, pathogenesis, and medical management of AFFs, published since 2010. This newer evidence suggests that AFFs are stress or insufficiency fractures. The original case definition was revised to highlight radiographic features that distinguish AFFs from ordinary osteoporotic femoral diaphyseal fractures and to provide guidance on the importance of their transverse orientation. The requirement that fractures be noncomminuted was relaxed to include minimal comminution. The periosteal stress reaction at the fracture site was changed from a minor to a major feature. The association with specific diseases and drug exposures was removed from the minor features, because it was considered that these associations should be sought rather than be included in the case definition. Studies with radiographic review consistently report significant associations between AFFs and BP use, although the strength of associations and magnitude of effect vary. Although the relative risk of patients with AFFs taking BPs is high, the absolute risk of AFFs in patients on BPs is low, ranging from 3.2 to 50 cases per 100,000 person-years. However, long-term use may be associated with higher risk (∼100 per 100,000 person-years). BPs localize in areas that are developing stress fractures; suppression of targeted intracortical remodeling at the site of an AFF could impair the processes by which stress fractures normally heal. When BPs are stopped, risk of an AFF may decline. Lower limb geometry and Asian ethnicity may contribute to the risk of AFFs. There is inconsistent evidence that teriparatide may advance healing of AFFs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease.

            Fibroblast growth factor 23 (FGF23) regulates phosphorus metabolism and is a strong predictor of mortality in dialysis patients. FGF23 is thought to be an early biomarker of disordered phosphorus metabolism in the initial stages of chronic kidney disease (CKD). We measured FGF23 in baseline samples from 3879 patients in the Chronic Renal Insufficiency Cohort study, which is a diverse cohort of patients with CKD stage 2-4. Mean serum phosphate and median parathyroid hormone (PTH) levels were in the normal range, but median FGF23 was markedly greater than in healthy populations, and increased significantly with decreasing estimated glomerular filtration rate (eGFR). High levels of FGF23, defined as being above 100 RU/ml, were more common than secondary hyperparathyroidism and hyperphosphatemia in all strata of eGFR. The threshold of eGFR at which the slope of FGF23 increased was significantly higher than the corresponding threshold for PTH based on non-overlapping 95% confidence intervals. Thus, increased FGF23 is a common manifestation of CKD that develops earlier than increased phosphate or PTH. Hence, FGF23 measurements may be a sensitive early biomarker of disordered phosphorus metabolism in patients with CKD and normal serum phosphate levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Romosozumab in postmenopausal women with low bone mineral density.

              Sclerostin is an osteocyte-derived inhibitor of osteoblast activity. The monoclonal antibody romosozumab binds to sclerostin and increases bone formation.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2017
                22 March 2017
                : 2017
                : 3485785
                Affiliations
                1Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan
                2Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima, Japan
                3Division of Nephrology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
                Author notes
                *Masafumi Fukagawa: fukagawa@ 123456tokai-u.jp

                Academic Editor: Wen-Chin Lee

                Author information
                http://orcid.org/0000-0002-7832-2339
                Article
                10.1155/2017/3485785
                5380833
                28421193
                8fed2704-3c02-46b8-beee-61c0400d82dc
                Copyright © 2017 Yoshiko Iwasaki et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 October 2016
                : 28 February 2017
                : 13 March 2017
                Categories
                Review Article

                Comments

                Comment on this article