14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent studies have revealed that multiple sclerosis (MS) lesions have distinct microRNA (miRNA) expression profiles. miR-181 family members show altered expression in MS tissues although their participation in MS pathogenesis remains uncertain. Herein, we investigated the involvement of miR-181a and miR-181b in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE).

          Methods

          miR-181a and -b levels were measured in the central nervous system (CNS) of patients with MS and mice with EAE as well as relevant leukocyte cultures by real-time RT-PCR. To examine the role of the miRNAs in leukocyte differentiation and function, miR-181a and -b mimic sequences were transfected into cultured primary macrophages and purified CD4 + T cells which were then analyzed by RT-PCR and flow cytometry. Luciferase reporter assays were performed to investigate the interaction of miR-181a and -b with the 3′-UTR of potential target transcripts, and the expression of target genes was measured in the CNS of EAE mice, activated lymphocytes, and macrophages.

          Results

          Expression analyses revealed a significant decrease in miR-181a and -b levels in brain white matter from MS patients as well as in spinal cords of EAE mice during the acute and chronic phases of disease. Suppression of miR-181a was observed following antigen-specific or polyclonal activation of lymphocytes as well as in macrophages following LPS treatment. Overexpression of miR-181a and -b mimic sequences reduced proinflammatory gene expression in macrophages and polarization toward M1 phenotype. miR-181a and -b mimic sequences inhibited Th1 generation in CD4 + T cells and miR-181a mimic sequences also promoted Treg differentiation. Luciferase assays revealed Suppressor of mothers against decapentaplegic 7 (Smad7), as a direct target of miR-181a and -b.

          Conclusion

          Our data highlight the anti-inflammatory actions of miR-181a and -b in the context of autoimmune neuroinflammation. miR-181a and -b influence differentiation of T helper cell and activation of macrophages, providing potential therapeutic options for controlling inflammation in MS.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The relation between inflammation and neurodegeneration in multiple sclerosis brains

          Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation to lesional activity and clinical course, with a particular focus on progressive multiple sclerosis. The study is based on detailed quantification of different inflammatory cells in relation to axonal injury in 67 multiple sclerosis autopsies from different disease stages and 28 controls without neurological disease or brain lesions. We found that pronounced inflammation in the brain is not only present in acute and relapsing multiple sclerosis but also in the secondary and primary progressive disease. T- and B-cell infiltrates correlated with the activity of demyelinating lesions, while plasma cell infiltrates were most pronounced in patients with secondary progressive multiple sclerosis (SPMS) and primary progressive multiple sclerosis (PPMS) and even persisted, when T- and B-cell infiltrates declined to levels seen in age matched controls. A highly significant association between inflammation and axonal injury was seen in the global multiple sclerosis population as well as in progressive multiple sclerosis alone. In older patients (median 76 years) with long-disease duration (median 372 months), inflammatory infiltrates declined to levels similar to those found in age-matched controls and the extent of axonal injury, too, was comparable with that in age-matched controls. Ongoing neurodegeneration in these patients, which exceeded the extent found in normal controls, could be attributed to confounding pathologies such as Alzheimer's or vascular disease. Our study suggests a close association between inflammation and neurodegeneration in all lesions and disease stages of multiple sclerosis. It further indicates that the disease processes of multiple sclerosis may die out in aged patients with long-standing disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            STAT3 regulates cytokine-mediated generation of inflammatory helper T cells.

            Interleukin-17 (IL-17)-producing helper T (TH) cells, named as TH(IL-17), TH17, or inflammatory TH (THi), have been recently identified as a novel effector lineage. However, how cytokine signals mediate THi differentiation is unclear. We found that IL-6 functioned to up-regulate IL-23R and that IL-23 synergized with IL-6 in promoting THi generation. STAT3, activated by both IL-6 and IL-23, plays a critical role in THi development. A hyperactive form of STAT3 promoted THi development, whereas this differentiation process was greatly impaired in STAT3-deficient T cells. Moreover, STAT3 regulated the expression of retinoic acid receptor-related orphan receptor gamma-T (RORgamma t), a THi-specific transcriptional regulator; STAT3 deficiency impaired RORgamma t expression and led to elevated expression of T-box expressed in T cells (T-bet) and Forkhead box P3 (Foxp3). Our data thus demonstrate a pathway whereby cytokines regulate THi differentiation through a selective STAT transcription factor that functions to regulate lineage-specific gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility.

              Ligands of the transforming growth factor-beta (TGFbeta) superfamily of growth factors initiate signal transduction through a bewildering complexity of ligand-receptor interactions. Signalling then converges to nuclear accumulation of transcriptionally active SMAD complexes and gives rise to a plethora of specific functional responses in both embryos and adult organisms. Current research is focused on the mechanisms that regulate SMAD activity to evoke cell-type-specific and context-dependent transcriptional programmes. An equally important challenge is understanding the functional role of signal strength and duration. How are these quantitative aspects of the extracellular signal regulated? How are they then sensed and interpreted, and how do they affect responses?
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                19 July 2017
                2017
                : 8
                : 758
                Affiliations
                [1] 1Department of Immunology, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
                [2] 2Shefa Neuroscience Research Center, Khatam Al-Anbia Hospital , Tehran, Iran
                [3] 3Department of Medicine (Neurology), University of Alberta , Edmonton, AB, Canada
                [4] 4Multiple Sclerosis Centre, University of Alberta , Edmonton, AB, Canada
                Author notes

                Edited by: V. Wee Yong, University of Calgary, Canada

                Reviewed by: Ranjan Dutta, Cleveland Clinic Lerner College of Medicine, United States; Craig Stephen Moore, Memorial University of Newfoundland, Canada

                *Correspondence: Farshid Noorbakhsh, f-noorbakhsh@ 123456sina.tums.ac.ir

                Specialty section: This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00758
                5515858
                90d43b21-c629-4153-8d61-7e4462a966fa
                Copyright © 2017 Ghorbani, Talebi, Chan, Masoumi, Vojgani, Power and Noorbakhsh.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 March 2017
                : 15 June 2017
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 64, Pages: 14, Words: 8686
                Funding
                Funded by: University of Tehran 10.13039/501100004481
                Award ID: 15983-30-04-90
                Categories
                Immunology
                Original Research

                Immunology
                experimental autoimmune encephalomyelitis,multiple sclerosis,microrna,mir-181,suppressor of mothers against decapentaplegic 7

                Comments

                Comment on this article