20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regulated centrosome biogenesis is required for accurate cell division and for maintaining genome integrity 1 . Centrosomes consist of a centriole pair surrounded by a protein network known as pericentriolar material (PCM) 1 . PCM assembly is a tightly regulated, critical step that determines a centrosome’s size and capability 24 . Here, we report a role for tubulin in regulating PCM recruitment via the conserved centrosomal protein Sas-4. Tubulin directly binds to Sas-4; together they are components of cytoplasmic complexes of centrosomal proteins 5, 6 . A Sas-4 mutant, which cannot bind tubulin, enhances centrosomal protein complex formation and has abnormally large centrosomes with excessive activity. These suggest that tubulin negatively regulates PCM recruitment. Whereas tubulin-GTP prevents Sas-4 from forming protein complexes, tubulin-GDP promotes it. Thus, tubulin’s regulation of PCM recruitment depends on its GTP/GDP-bound state. These results identify a role for tubulin in regulating PCM recruitment independent of its well-known role as a building block of microtubules 7 . Based on its guanine bound state, tubulin can act as a molecular switch in PCM recruitment.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Centrioles, centrosomes, and cilia in health and disease.

          Centrioles are barrel-shaped structures that are essential for the formation of centrosomes, cilia, and flagella. Here we review recent advances in our understanding of the function and biogenesis of these organelles, and we emphasize their connection to human disease. Deregulation of centrosome numbers has long been proposed to contribute to genome instability and tumor formation, whereas mutations in centrosomal proteins have recently been genetically linked to microcephaly and dwarfism. Finally, structural or functional centriole aberrations contribute to ciliopathies, a variety of complex diseases that stem from the absence or dysfunction of cilia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flies without centrioles.

            Centrioles and centrosomes have an important role in animal cell organization, but it is uncertain to what extent they are essential for animal development. The Drosophila protein DSas-4 is related to the human microcephaly protein CenpJ and the C. elegans centriolar protein Sas-4. We show that DSas-4 is essential for centriole replication in flies. DSas-4 mutants start to lose centrioles during embryonic development, and, by third-instar larval stages, no centrioles or centrosomes are detectable. Mitotic spindle assembly is slow in mutant cells, and approximately 30% of the asymmetric divisions of larval neuroblasts are abnormal. Nevertheless, mutant flies develop with near normal timing into morphologically normal adults. These flies, however, have no cilia or flagella and die shortly after birth because their sensory neurons lack cilia. Thus, centrioles are essential for the formation of centrosomes, cilia, and flagella, but, remarkably, they are not essential for most aspects of Drosophila development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small GTP-binding proteins.

              Small GTP-binding proteins (G proteins) exist in eukaryotes from yeast to human and constitute a superfamily consisting of more than 100 members. This superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Sar1/Arf, and Ran families. They regulate a wide variety of cell functions as biological timers (biotimers) that initiate and terminate specific cell functions and determine the periods of time for the continuation of the specific cell functions. They furthermore play key roles in not only temporal but also spatial determination of specific cell functions. The Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. Many upstream regulators and downstream effectors of small G proteins have been isolated, and their modes of activation and action have gradually been elucidated. Cascades and cross-talks of small G proteins have also been clarified. In this review, functions of small G proteins and their modes of activation and action are described.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nat. Cell Biol.
                Nature cell biology
                1465-7392
                1476-4679
                22 May 2012
                24 June 2012
                August 2012
                01 February 2013
                : 14
                : 8
                : 865-873
                Affiliations
                [1 ]Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
                [2 ]Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
                Author notes
                [** ]Correspondence should be addressed to TAR ( tomer_avidor-reiss@ 123456hms.harvard.edu )
                [*]

                These authors made equal contributions

                Article
                NIHMS378605
                10.1038/ncb2527
                3411905
                22729084
                91bb9012-6abf-482a-a50f-c53be117e8a5

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article