0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Robustness of differential gene expression analysis of RNA-seq

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Abstract

          RNA-sequencing (RNA-seq) is a relatively new technology that lacks standardisation. RNA-seq can be used for Differential Gene Expression (DGE) analysis, however, no consensus exists as to which methodology ensures robust and reproducible results. Indeed, it is broadly acknowledged that DGE methods provide disparate results. Despite obstacles, RNA-seq assays are in advanced development for clinical use but further optimisation will be needed. Herein, five DGE models (DESeq2, voom + limma, edgeR, EBSeq, NOISeq) for gene-level detection were investigated for robustness to sequencing alterations using a controlled analysis of fixed count matrices. Two breast cancer datasets were analysed with full and reduced sample sizes. DGE model robustness was compared between filtering regimes and for different expression levels (high, low) using unbiased metrics. Test sensitivity estimated as relative False Discovery Rate (FDR), concordance between model outputs and comparisons of a ’population’ of slopes of relative FDRs across different library sizes, generated using linear regressions, were examined. Patterns of relative DGE model robustness proved dataset-agnostic and reliable for drawing conclusions when sample sizes were sufficiently large. Overall, the non-parametric method NOISeq was the most robust followed by edgeR, voom, EBSeq and DESeq2. Our rigorous appraisal provides information for method selection for molecular diagnostics. Metrics may prove useful towards improving the standardisation of RNA-seq for precision medicine.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

          In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast gapped-read alignment with Bowtie 2.

            As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fast and accurate short read alignment with Burrows–Wheeler transform

              Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Struct Biotechnol J
                Comput Struct Biotechnol J
                Computational and Structural Biotechnology Journal
                Research Network of Computational and Structural Biotechnology
                2001-0370
                26 May 2021
                2021
                26 May 2021
                : 19
                : 3470-3481
                Affiliations
                [a ]Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
                [b ]Patrick G. Johnson Centre for Cancer Research, Queen’s University, Belfast, Northern Ireland, UK
                [c ]Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
                Author notes
                [* ]Corresponding author at: Bioinformatics Group, Health Sciences Building, Patrick G Johnson Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK. d.mcart@ 123456qub.ac.uk
                [1]

                Authors contributed equally to this manuscript.

                Article
                S2001-0370(21)00221-X
                10.1016/j.csbj.2021.05.040
                8214188
                34188784
                95091fb7-29a9-4830-a5d9-3efde891f131
                © 2021 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 3 December 2020
                : 25 May 2021
                : 25 May 2021
                Categories
                Research Article

                rna-seq,precision medicine,standardisation,diagnostics,differential gene expression analysis,differential gene expression models

                Comments

                Comment on this article