12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Downregulation of lncRNA TUG1 contributes to the development of sepsis‐associated acute kidney injury via regulating miR‐142‐3p/sirtuin 1 axis and modulating NF‐κB pathway

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Epidemiology of severe sepsis

          Severe sepsis is a leading cause of death in the United States and the most common cause of death among critically ill patients in non-coronary intensive care units (ICU). Respiratory tract infections, particularly pneumonia, are the most common site of infection, and associated with the highest mortality. The type of organism causing severe sepsis is an important determinant of outcome, and gram-positive organisms as a cause of sepsis have increased in frequency over time and are now more common than gram-negative infections. Recent studies suggest that acute infections worsen pre-existing chronic diseases or result in new chronic diseases, leading to poor long-term outcomes in acute illness survivors. People of older age, male gender, black race, and preexisting chronic health conditions are particularly prone to develop severe sepsis; hence prevention strategies should be targeted at these vulnerable populations in future studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina.

            With the advent of genome-wide analyses, it is becoming evident that a large number of noncoding RNAs (ncRNAs) are expressed in vertebrates. However, of the thousands of ncRNAs identified, the functions of relatively few have been established. In a screen for genes upregulated by taurine in developing retinal cells, we identified a gene that appears to be a ncRNA. Taurine Upregulated Gene 1 (TUG1) is a spliced, polyadenylated RNA that does not encode any open reading frame greater than 82 amino acids in its full-length, 6.7 kilobase (kb) RNA sequence. Analyses of Northern blots and in situ hybridization revealed that TUG1 is expressed in the developing retina and brain, as well as in adult tissues. In the newborn retina, knockdown of TUG1 with RNA interference (RNAi) resulted in malformed or nonexistent outer segments of transfected photoreceptors. Immunofluorescent staining and microarray analyses suggested that this loss of proper photoreceptor differentiation is a result of the disregulation of photoreceptor gene expression. A function for a newly identified ncRNA, TUG1, has been established. TUG1 is necessary for the proper formation of photoreceptors in the developing rodent retina.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis.

              Sepsis is a frequently fatal condition characterized by an uncontrolled and harmful host reaction to microbial infection. Despite the prevalence and severity of sepsis, we lack a fundamental grasp of its pathophysiology. Here we report that the cytokine interleukin-3 (IL-3) potentiates inflammation in sepsis. Using a mouse model of abdominal sepsis, we showed that innate response activator B cells produce IL-3, which induces myelopoiesis of Ly-6C(high) monocytes and neutrophils and fuels a cytokine storm. IL-3 deficiency protects mice against sepsis. In humans with sepsis, high plasma IL-3 levels are associated with high mortality even after adjusting for prognostic indicators. This study deepens our understanding of immune activation, identifies IL-3 as an orchestrator of emergency myelopoiesis, and reveals a new therapeutic target for treating sepsis.
                Bookmark

                Author and article information

                Journal
                Journal of Cellular Biochemistry
                J Cell Biochem
                Wiley
                0730-2312
                1097-4644
                March 27 2019
                July 2019
                March 04 2019
                July 2019
                : 120
                : 7
                : 11331-11341
                Affiliations
                [1 ]Department of Infectious MedicineShenzhen People's Hospital, ShenzhenGuangdong China
                [2 ]Department of Intensive Care UnitShenzhen People's Hospital, ShenzhenGuangdong China
                Article
                10.1002/jcb.28409
                9abd9d44-9642-4be1-8b2c-480eecd26832
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article