Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Mitochondria generate the cellular fuel ATP to sustain complex life. Production of ATP depends on the oxidation of energy-rich compounds to produce a chemical potential difference for hydrogen ions, the proton motive force (pmf), across the inner mitochondrial membrane (IMM). Disruption of the IMM, dissipation of the pmf, and cell death occur if the concentration of calcium ions inside mitochondria is sufficiently elevated to open a pore in the IMM. The identity of the pore is disputed. One proposal is that the pore is in the enzyme that makes ATP. Here, we show that proteins in the enzyme’s peripheral stalk are not involved in the formation or regulation of the pore.

          Abstract

          The opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membranes of mitochondria can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane and ATP synthesis, and cell death. Pore opening can be inhibited by cyclosporin A mediated via cyclophilin D. It has been proposed that the pore is associated with the dimeric ATP synthase and the oligomycin sensitivity conferral protein (OSCP), a component of the enzyme’s peripheral stalk, provides the site at which cyclophilin D interacts. Subunit b contributes a central α-helical structure to the peripheral stalk, extending from near the top of the enzyme’s catalytic domain and crossing the membrane domain of the enzyme via two α-helices. We investigated the possible involvement of the subunit b and the OSCP in the PTP by generating clonal cells, HAP1-Δb and HAP1-ΔOSCP, lacking the membrane domain of subunit b or the OSCP, respectively, in which the corresponding genes, ATP5F1 and ATP5O, had been disrupted. Both cell lines preserve the characteristic properties of the PTP; therefore, the membrane domain of subunit b does not contribute to the PTP, and the OSCP does not provide the site of interaction with cyclophilin D. The membrane subunits ATP6, ATP8, and subunit c have been eliminated previously from possible participation in the PTP; thus, the only subunits of ATP synthase that could participate in pore formation are e, f, g, diabetes-associated protein in insulin-sensitive tissues (DAPIT), and the 6.8-kDa proteolipid.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          The ATP synthase: the understood, the uncertain and the unknown.

          The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological and pathological roles of the mitochondrial permeability transition pore in the heart.

            Prolonged mitochondrial permeability transition pore (MPTP) opening results in mitochondrial energetic dysfunction, organelle swelling, rupture, and typically a type of necrotic cell death. However, acute opening of the MPTP has a critical physiologic role in regulating mitochondrial Ca(2+) handling and metabolism. Despite the physiological and pathological roles that the MPTP orchestrates, the proteins that comprise the pore itself remain an area of ongoing investigation. Here, we will discuss the molecular composition of the MPTP and its role in regulating cardiac physiology and disease. A better understanding of MPTP structure and function will likely suggest novel cardioprotective therapeutic approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria.

              The catalytic domain of the F-ATPase in mitochondria protrudes into the matrix of the organelle, and is attached to the membrane domain by central and peripheral stalks. Energy for the synthesis of ATP from ADP and phosphate is provided by the transmembrane proton-motive-force across the inner membrane, generated by respiration. The proton-motive force is coupled mechanically to ATP synthesis by the rotation at about 100 times per second of the central stalk and an attached ring of c-subunits in the membrane domain. Each c-subunit carries a glutamate exposed around the midpoint of the membrane on the external surface of the ring. The rotation is generated by protonation and deprotonation successively of each glutamate. Each 360° rotation produces three ATP molecules, and requires the translocation of one proton per glutamate by each c-subunit in the ring. In fungi, eubacteria, and plant chloroplasts, ring sizes of c(10)-c(15) subunits have been observed, implying that these enzymes need 3.3-5 protons to make each ATP, but until now no higher eukaryote has been examined. As shown here in the structure of the bovine F(1)-c-ring complex, the c-ring has eight c-subunits. As the sequences of c-subunits are identical throughout almost all vertebrates and are highly conserved in invertebrates, their F-ATPases probably contain c(8)-rings also. Therefore, in about 50,000 vertebrate species, and probably in many or all of the two million invertebrate species, 2.7 protons are required by the F-ATPase to make each ATP molecule.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                22 August 2017
                7 August 2017
                7 August 2017
                : 114
                : 34
                : 9086-9091
                Affiliations
                [1] aMedical Research Council Mitochondrial Biology Unit, University of Cambridge , Cambridge CB2 0XY, United Kingdom
                Author notes
                1To whom correspondence should be addressed. Email: walker@ 123456mrc-mbu.cam.ac.uk .

                Contributed by John E. Walker, July 12, 2017 (sent for review June 21, 2017; reviewed by Michael R. Duchen and David G. Nicholls)

                Author contributions: J.E.W. designed research; J.E.W. supervised the project; J.H., J.C., S.D., and I.M.F. performed research; J.H., J.C., S.D., I.M.F., and J.E.W. analyzed data; and J.E.W. wrote the paper.

                Reviewers: M.R.D., University College London; and D.G.N., Buck Center for Research on Aging.

                Author information
                http://orcid.org/0000-0001-7929-2162
                Article
                PMC5576841 PMC5576841 5576841 201711201
                10.1073/pnas.1711201114
                5576841
                28784775
                9b90b595-a378-44d4-8467-41560075b230

                Freely available online through the PNAS open access option.

                History
                Page count
                Pages: 6
                Funding
                Funded by: RCUK | Medical Research Council (MRC) 501100000265
                Award ID: MR/M009858/1
                Categories
                Biological Sciences
                Biochemistry

                ATP5F1 subunit b,ATP5O oligomycin sensitivity conferral protein,permeability transition pore,ATP synthase,human mitochondria

                Comments

                Comment on this article