12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential Therapeutic Effects of Gut Hormones, Ghrelin and Obestatin in Oral Mucositis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemotherapy and/or head and neck radiotherapy are frequently associated with oral mucositis. Oral pain, odynophagia and dysphagia, opioid use, weight loss, dehydration, systemic infection, hospitalization and introduction of a feeding tube should be mentioned as the main determinated effect of oral mucositis. Oral mucositis leads to a decreased quality of life and an increase in treatment costs. Moreover, oral mucositis is a life-threatening disease. In addition to its own direct life-threatening consequences, it can also lead to a reduced survival due to the discontinuation or dose reduction of anti-neoplasm therapy. There are numerous strategies for the prevention or treatment of oral mucositis; however, their effectiveness is limited and does not correspond to expectations. This review is focused on the ghrelin and obestatin as potentially useful candidates for the prevention and treatment of chemo- or/and radiotherapy-induced oral mucositis.

          Related collections

          Most cited references273

          • Record: found
          • Abstract: found
          • Article: not found

          The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans.

          Ghrelin is a novel growth hormone-releasing peptide, originally identified in the rat stomach as the endogenous ligand for the growth hormone secretagogue-receptor (GHS-R1a). Ghrelin is involved in the regulation of GH release, but it has recently been suggested that ghrelin may have other actions, including effects on appetite, carbohydrate metabolism, heart, kidney, pancreas, gonads, and cell proliferation. The distribution of ghrelin, its functional receptor (type 1a) and the unspliced, non-functional GHS-R type 1b mRNA expression was investigated in various human tissues using classical and real-time reverse transcription and polymerase chain reaction. GHS-R1a was predominantly expressed in the pituitary and at much lower levels in the thyroid gland, pancreas, spleen, myocardium and adrenal gland. In contrast, ghrelin was found in the stomach, other parts of the gut and, indeed, in all the tissues studied (adrenal gland, atrium, breast, buccal mucosa, esophagus, Fallopian tube, fat tissue, gall bladder, human lymphocytes, ileum, kidney, left colon, liver, lung, lymph node, muscle, muscle, myocardium, ovary, pancreas, pituitary, placenta, prostate, right colon, skin, spleen, testis, thyroid, and vein). GHS-R1b expression was also widespread in all tissues studied. The significance of the widespread tissue distribution of ghrelin remains to be determined. These data suggest that ghrelin might have widespread physiological effects via different, partly unidentified, subtypes of the GHS-R in endocrine and non-endocrine tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake.

            Ghrelin, a circulating appetite-inducing hormone, is derived from a prohormone by posttranslational processing. On the basis of the bioinformatic prediction that another peptide also derived from proghrelin exists, we isolated a hormone from rat stomach and named it obestatin-a contraction of obese, from the Latin "obedere," meaning to devour, and "statin," denoting suppression. Contrary to the appetite-stimulating effects of ghrelin, treatment of rats with obestatin suppressed food intake, inhibited jejunal contraction, and decreased body-weight gain. Obestatin bound to the orphan G protein-coupled receptor GPR39. Thus, two peptide hormones with opposing action in weight regulation are derived from the same ghrelin gene. After differential modification, these hormones activate distinct receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans.

              Ghrelin, an endogenous ligand for the GH secretagogue receptor, was isolated from rat stomach and is involved in a novel system for regulating GH release. Although previous studies in rodents suggest that ghrelin is also involved in energy homeostasis and that ghrelin secretion is influenced by feeding, little is known about plasma ghrelin in humans. To address this issue, we studied plasma ghrelin-like immunoreactivity levels and elucidated the source of circulating ghrelin and the effects of feeding state on plasma ghrelin-like immunoreactivity levels in humans. The plasma ghrelin-like immunoreactivity concentration in normal humans measured by a specific RIA was 166.0 +/- 10.1 fmol/ml. Northern blot analysis of various human tissues identified ghrelin mRNA found most abundantly in the stomach and plasma ghrelin-like immunoreactivity levels in totally gastrectomized patients were reduced to 35% of those in normal controls. Plasma ghrelin-like immunoreactivity levels were increased by 31% after 12-h fasting and reduced by 22% immediately after habitual feeding. In patients with anorexia nervosa, plasma ghrelin-like immunoreactivity levels were markedly elevated compared with those in normal controls (401.2 +/- 58.4 vs. 192.8 +/- 19.4 fmol/ml) and were negatively correlated with body mass indexes. We conclude that the stomach is a major source of circulating ghrelin and that plasma ghrelin-like immunoreactivity levels reflect acute and chronic feeding states in humans.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                27 March 2019
                April 2019
                : 20
                : 7
                : 1534
                Affiliations
                Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16 St., 31-531 Krakow, Poland; agnieszka.stempniewicz@ 123456doctoral.uj.edu.pl (A.S.); mpwarzec@ 123456cyf-kr.edu.pl (Z.W.)
                Author notes
                [* ]Correspondence: piotr.ceranowicz@ 123456uj.edu.pl ; Tel.: +48-12-4211006; Fax: +48-12-4225478
                Author information
                https://orcid.org/0000-0003-3478-0108
                Article
                ijms-20-01534
                10.3390/ijms20071534
                6479885
                30934722
                9beb76c4-514e-44c1-a1b3-a4661507b118
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 February 2019
                : 19 March 2019
                Categories
                Review

                Molecular biology
                gut hormone,ghrelin,obestatin,oral mucositis,chemotheraphy,radiotherapy,cancer
                Molecular biology
                gut hormone, ghrelin, obestatin, oral mucositis, chemotheraphy, radiotherapy, cancer

                Comments

                Comment on this article