13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Notes from the Field: Occupational Hazards Associated with Harvesting and Processing Cannabis — Washington, 2015–2016

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the possession, use, and sale of all forms of cannabis are illegal under U.S. federal law, since 2012, multiple states have legalized the retail sale of cannabis for medical and recreational use ( 1 ). Previous research studies have indicated that Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of cannabis, can cause acute and chronic health effects ( 2 ). However, health effects from long-term occupational exposures to cannabis during harvesting and processing are unknown, in part because most studies have focused primarily on nonoccupational settings ( 3 ). In June 2015, the National Institute for Occupational Safety and Health (NIOSH) received a request for a Health Hazard Evaluation (HHE) from a representative of the United Food and Commercial Workers International Union to evaluate potential health and safety hazards associated with harvesting and processing cannabis at an outdoor farm. In response to the request, NIOSH visited the farm in August and October 2015. The farm was located in Washington; the state had legalized cannabis for medicinal use in 1998 and recreational use in 2012. At the time of the HHE, the farm was operated by the owner and three employees. The 5-acre farm did not use any pesticides and grew cannabis, vegetables, and fruits. During the visit, the owner and all three employees were interviewed about their work, safety, and health concerns. Work practices were observed, and musculoskeletal risk factors for the hands, wrists, and shoulders during harvesting and processing tasks were evaluated. Digital force gauges and pinch gauges were used to assess manual hand forces during destemming, and a CyberGlove electrogoniometer glove (http://www.cyberglovesystems.com/) was used to assess dynamics and repetitive motion of the hand and fingers in trimming. Area and personal air samples were collected to test for gram-negative bacterial lipopolysaccharide (commonly referred to as endotoxin) and to determine bacterial and fungal diversity using 16S ribosomal RNA (16S rRNA) and fungal internal transcribed spacer (ITS) region gene sequencing, respectively ( 4 ). Exposure to these biologic hazards can increase the risk for allergic and respiratory symptoms ( 2 ). Surface wipe samples were collected and analyzed for Δ9-THC using ultra high performance liquid chromatography tandem mass spectrometry ( 5 ). The owner and all three employees reported performing several tasks at the farm, including harvesting, bud stripping, and trimming. No one reported hand, wrist, or shoulder symptoms or other musculoskeletal problems. However, employees did express concerns about whether they might develop long-term musculoskeletal problems because of manually hand trimming cannabis. Harvesting tasks were observed and recorded by photograph and video. Analysis indicated that hand trimming of cannabis (Figure) involved low hand forces but was highly repetitive work. FIGURE Hand trimming of cannabis flower using scissors while wearing a CyberGlove Photo/National Institute for Occupational Safety and Health The figure above shows an employee holding scissors at a trim station for the final stage of flower hand trimming. The employee is wearing a CyberGlove on the right hand and a latex glove on the left hand. Personal, full-shift endotoxin air sample concentrations ranged from 2.8 to 37 endotoxin units per cubic meter, which was below the Dutch Expert Committee on Occupational Safety recommended occupational exposure limit of 90 endotoxin units per cubic meter. No U.S. occupational exposure limits for endotoxin are available. Analysis of bacterial diversity revealed outdoor area air samples composed of sequences derived from the phyla Proteobacteria (34%) and Actinobacteria (23%), whereas personal air samples were predominantly composed of sequences derived from the phylum Actinobacteria (47%). In contrast, sequencing of fungal ITS regions revealed a diversity composed of sequences predominantly assigned to the phylum Basidiomycota in outdoor (91%) and drying room samples (70%), whereas personal air samples had a lower fungal diversity predominantly composed of the Ascomycota fungal species, Botrytis cinerea (59%). This fungal species is a well-characterized aeroallergen and plant pathogen of cannabis. Δ9-THC was detected in all 27 surface sample wipes collected in cannabis production areas ranging from 0.17 to 210 μg per 100 cm2. The findings of this HHE indicated that the employees have exposures to highly repetitive work, most notably during hand trimming activities, which increase workers’ risk for musculoskeletal disorders ( 6 ). Worker exposure to aerosolized Actinobacteria and fungi such as B. cinerea, might also result from processing and hand trimming activities, which can increase the risk for allergic and respiratory symptoms, as has previously been observed in the cannabis processing industry ( 2 ). Δ9-THC surface wipe concentrations indicated the potential for dermal and ingestion exposures. However, the health implications from long-term occupational exposure to Δ9-THC are unknown. Detailed information is available in the final HHE report (https://www.cdc.gov/niosh/hhe/reports/pdfs/2015-0111-3271.pdf). The NIOSH HHE program (https://www.cdc.gov/niosh/hhe/) continues to evaluate potential hazards associated with the harvesting and processing of cannabis and will provide updated recommendations to educate employers and employees on the occupational hazards associated with the harvesting and processing of cannabis plants.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluating the public health impacts of legalizing recreational cannabis use in the United States.

          Since 2012 four US states have legalized the retail sale of cannabis for recreational use by adults, and more are likely to follow. This report aimed to (1) briefly describe the regulatory regimes so far implemented; (2) outline their plausible effects on cannabis use and cannabis-related harm; and (3) suggest what research is needed to evaluate the public health impact of these policy changes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Work-related musculoskeletal disorders of the hand and wrist: epidemiology, pathophysiology, and sensorimotor changes.

            The purpose of this commentary is to present recent epidemiological findings regarding work-related musculoskeletal disorders (WMSDs) of the hand and wrist, and to summarize experimental evidence of underlying tissue pathophysiology and sensorimotor changes in WMSDs. Sixty-five percent of the 333 800 newly reported cases of occupational illness in 2001 were attributed to repeated trauma. WMSDs of the hand and wrist are associated with the longest absences from work and are, therefore, associated with greater lost productivity and wages than those of other anatomical regions. Selected epidemiological studies of hand/wrist WMSDs published since 1998 are reviewed and summarized. Results from selected animal studies concerning underlying tissue pathophysiology in response to repetitive movement or tissue loading are reviewed and summarized. To the extent possible, corroborating evidence in human studies for various tissue pathomechanisms suggested in animal models is presented. Repetitive, hand-intensive movements, alone or in combination with other physical, nonphysical, and nonoccupational risk factors, contribute to the development of hand/wrist WMSDs. Possible pathophysiological mechanisms of tissue injury include inflammation followed by repair and/or fibrotic scarring, peripheral nerve injury, and central nervous system reorganization. Clinicians should consider all of these pathomechanisms when examining and treating patients with hand/wrist WMSDs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potential exposures associated with indoor marijuana growing operations.

              We entered a total of 30 indoor marijuana grow operations (IMGO) with law enforcement investigators in order to determine potential exposures to first responders. Samples for airborne fungal spores, volatile organic compounds, carbon dioxide, carbon monoxide, and delta-9-tetrahydrocannabinol (THC) were obtained as well as the identification of chemicals utilized in the IMGO. The chemicals utilized within the IMGOs were primarily pesticides and fertilizers with none showing high toxicity. Although several of the IMGOs had CO2 enrichment processes involving combustion, CO levels were not elevated. THC levels were identified on surfaces within the IMGOs and on the hands of the investigators. Surface levels ranged from <0.1 μg /100 cm(2) to 2000 μg /100 cm(2) with a geometric mean of 0.37 μg /100 cm(2). THC levels on the hands of officers ranged from <0.10 μg /wipe to 2900 μg /wipe with a geometric mean of 15 μg /wipe. These levels were not considered to be elevated to the point of causing a toxic exposure to responders. A total of 407 fungal spore samples were taken using both slit impactor plates and 400-hole impactors. Both methods identified elevated fungal spore levels, especially during the removal of plants from some of the IMGOs. After plant removal, spore counts increased to levels above 50,000 spores/m(3) with one sample over 500,000 spores/m(3). In addition, we found that there was a shift in species between indoor and outdoor samples with Cladosporium sp. the predominant outdoor species and Penicillium sp. the predominant indoor species. We concluded that the potential increase in fungal spore concentrations associated with the investigation and especially removal of the marijuana plants could potentially expose responders to levels of exposure consistent with those associated with mold remediation processes and that respiratory protection is advisable.
                Bookmark

                Author and article information

                Journal
                MMWR Morb Mortal Wkly Rep
                MMWR Morb. Mortal. Wkly. Rep
                WR
                Morbidity and Mortality Weekly Report
                Centers for Disease Control and Prevention
                0149-2195
                1545-861X
                02 March 2018
                02 March 2018
                : 67
                : 8
                : 259-260
                Affiliations
                Office of the Director, Emergency Preparedness and Response Office, National Institute for Occupational Safety and Health, CDC; Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, CDC; Division of Applied Research and Technology, National Institute for Occupational Safety and Health, CDC; Health Effects Laboratory Division, National Institute for Occupational Safety and Health, CDC.
                Author notes
                Corresponding author: James Couch, jcouch@ 123456cdc.gov , 513-841-4318.
                Article
                mm6708a7
                10.15585/mmwr.mm6708a7
                5861698
                29494573
                9cd5a65d-9b06-4395-9575-a36285ab2702

                All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

                History
                Categories
                Notes from the Field

                Comments

                Comment on this article