14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog.

      Reproduction (Cambridge, England)
      Animals, Dogs, Genotype, Male, Microsatellite Repeats, Models, Animal, Spermatogenesis, physiology, radiation effects, Spermatogonia, transplantation, Spermatozoa, Stem Cell Transplantation, methods, Testis, Transplantation Conditioning, Transplantation, Homologous

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spermatogonial stem cell transplantation (SSCT) offers unique approaches to investigate SSC and to manipulate the male germline. We report here the first successful performance of this technique in the dog, which is an important model of human diseases. First, we investigated an irradiation protocol to deplete endogenous male germ cells in recipient testes. Histologic examination confirmed >95% depletion of endogenous spermatogenesis, but retention of normal testis architecture. Then, 5-month-old recipient dogs (n=5) were focally irradiated on their testes prior to transplantation with mixed seminiferous tubule cells (fresh (n=2) or after 2 weeks of culture (n=3)). The dogs receiving cultured cells showed an immediate allergic response, which subsided quickly with palliative treatment. No such response was seen in the dogs receiving fresh cells, for which a different injection medium was used. Twelve months post-injection recipients were castrated and sperm was collected from epididymides. We performed microsatellite analysis comparing DNA from the epididymal sperm with genomic DNA from both the recipients and the donors. We used six markers to demonstrate the presence of donor alleles in the sperm from one recipient of fresh mixed tubule cells. No evidence of donor alleles was detected in sperm from the other recipients. Using quantitative PCR based on single nucleotide polymorphisms (SNPs), about 19.5% of sperm were shown to be donor derived in the recipient. Our results demonstrate the first successful completion of SSCT in the dog, an important step toward transgenesis through the male germline in this valuable biomedical model.

          Related collections

          Author and article information

          Comments

          Comment on this article