9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinicopathological Characteristics and Mutations Driving Development of Early Lung Adenocarcinoma: Tumor Initiation and Progression

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer is the leading cause of cancer-related deaths worldwide, with lung adenocarcinoma representing the most common lung cancer subtype. Among all lung adenocarcinomas, the most prevalent subset develops via tumorigenesis and progression from atypical adenomatous hyperplasia (AAH) to adenocarcinoma in situ (AIS), to minimally invasive adenocarcinoma (MIA), to overt invasive adenocarcinoma with a lepidic pattern. This stepwise development is supported by the clinicopathological and molecular characteristics of these tumors. In the 2015 World Health Organization classification, AAH and AIS are both defined as preinvasive lesions, whereas MIA is identified as an early invasive adenocarcinoma that is not expected to recur if removed completely. Recent studies have examined the molecular features of lung adenocarcinoma tumorigenesis and progression. EGFR-mutated adenocarcinoma frequently develops via the multistep progression. Oncogene-induced senescence appears to decrease the frequency of the multistep progression in KRAS- or BRAF-mutated adenocarcinoma, whose tumor evolution may be associated with epigenetic alterations and kinase-inactive mutations. This review summarizes the current knowledge of tumorigenesis and tumor progression in early lung adenocarcinoma, with special focus on its clinicopathological characteristics and their associations with driver mutations ( EGFR, KRAS, and BRAF) as well as on its molecular pathogenesis and progression.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers.

          Mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene in lung cancers are associated with increased sensitivity of these cancers to drugs that inhibit EGFR kinase activity. However, the role of such mutations in the pathogenesis of lung cancers is unclear. We sequenced exons 18-21 of the EGFR TK domain from genomic DNA isolated from 617 non-small-cell lung cancers (NSCLCs) and 524 normal lung tissue samples from the same patients and 36 neuroendocrine lung tumors collected from patients in Japan, Taiwan, the United States, and Australia and from 243 other epithelial cancers. Mutation status was compared with clinicopathologic features and with the presence of mutations in KRAS, a gene in the EGFR signaling pathway that is also frequently mutated in lung cancers. All statistical tests were two sided. We detected a total of 134 EGFR TK domain mutations in 130 (21%) of the 617 NSCLCs but not in any of the other carcinomas, nor in nonmalignant lung tissue from the same patients. In NSCLC patients, EGFR TK domain mutations were statistically significantly more frequent in never smokers than ever smokers (51% versus 10%), in adenocarcinomas versus cancer of other histologies (40% versus 3%), in patients of East Asian ethnicity versus other ethnicities (30% versus 8%), and in females versus males (42% versus 14%; all P < .001). EGFR TK domain mutation status was not associated with patient age at diagnosis, clinical stage, the presence of bronchioloalveolar histologic features, or overall survival. The EGFR TK domain mutations we detected were of three common types: in-frame deletions in exon 19, single missense mutations in exon 21, and in-frame duplications/insertions in exon 20. Rare missense mutations were also detected in exons 18, 20, and 21. KRAS gene mutations were present in 50 (8%) of the 617 NSCLCs but not in any tumors with an EGFR TK domain mutation. Mutations in either the EGFR TK domain or the KRAS gene can lead to lung cancer pathogenesis. EGFR TK domain mutations are the first molecular change known to occur specifically in never smokers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumour biology: senescence in premalignant tumours.

            Oncogene-induced senescence is a cellular response that may be crucial for protection against cancer development, but its investigation has so far been restricted to cultured cells that have been manipulated to overexpress an oncogene. Here we analyse tumours initiated by an endogenous oncogene, ras, and show that senescent cells exist in premalignant tumours but not in malignant ones. Senescence is therefore a defining feature of premalignant tumours that could prove valuable in the diagnosis and prognosis of cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wnt signaling pathway in non-small cell lung cancer.

              D Stewart (2014)
              Wnt/β-catenin alterations are prominent in human malignancies. In non-small cell lung cancer (NSCLC), β-catenin and APC mutations are uncommon, but Wnt signaling is important in NSCLC cell lines, and Wnt inhibition reduces proliferation. Overexpression of Wnt-1, -2, -3, and -5a and of Wnt-pathway components Frizzled-8, Dishevelled, Porcupine, and TCF-4 is common in resected NSCLC and is associated with poor prognosis. Conversely, noncanonical Wnt-7a suppresses NSCLC development and is often downregulated. Although β-catenin is often expressed in NSCLCs, it was paradoxically associated with improved prognosis in some series, possibly because of E-cadherin interactions. Downregulation of Wnt inhibitors (eg, by hypermethylation) is common in NSCLC tumor cell lines and resected samples; may be associated with high stage, dedifferentiation, and poor prognosis; and has been reported for AXIN, sFRPs 1-5, WIF-1, Dkk-1, Dkk-3, HDPR1, RUNX3, APC, CDX2, DACT2, TMEM88, Chibby, NKD1, EMX2, ING4, and miR-487b. AXIN is also destabilized by tankyrases, and GSK3β may be inactivated through phosphorylation by EGFR. Preclinically, restoration of Wnt inhibitor function is associated with reduced Wnt signaling, decreased cell proliferation, and increased apoptosis. Wnt signaling may also augment resistance to cisplatin, docetaxel, and radiotherapy, and Wnt inhibitors may restore sensitivity. Overall, available data indicate that Wnt signaling substantially impacts NSCLC tumorigenesis, prognosis, and resistance to therapy, with loss of Wnt signaling inhibitors by promoter hypermethylation or other mechanisms appearing to be particularly important. Wnt pathway antagonists warrant exploration clinically in NSCLC. Agents blocking selected specific β-catenin interactions and approaches to increase expression of downregulated Wnt inhibitors may be of particular interest.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                23 April 2018
                April 2018
                : 19
                : 4
                : 1259
                Affiliations
                Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan; kentaro.inamura@ 123456jfcr.or.jp ; Tel.: +81-3-3570-0111 (ext. 5604); Fax: +81-3-3570-0558
                Author information
                https://orcid.org/0000-0001-6444-3861
                Article
                ijms-19-01259
                10.3390/ijms19041259
                5979290
                29690599
                a0941888-6e0a-45c8-902c-457557df4bc9
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 April 2018
                : 20 April 2018
                Categories
                Review

                Molecular biology
                cdkn2a (p16),de novo pathway,hnf4a,immunohistochemistry,molecular pathological epidemiology,nkx2-1 (ttf-1) amplification,napsin a,noguchi classification,terminal respiratory unit (tru)-lineage,tp53 (p53)

                Comments

                Comment on this article