27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis

      abstract

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most tumors display enhanced glucose metabolism compared to normal tissues [1-6]. The preferential conversion of glucose to lactate in cancer cells (the Warburg Effect) was one of the first known differences between tumor and normal cells and is believed to contribute to enhanced growth in tumor cells. However, the extent to which specific metabolic fluxes originating from glucose branch from central carbon metabolism and are utilized for anabolic processes is poorly understood. Here, we used an integrated, quantitative metabolomics approach combining NMR experiments with heavy isotope labeling and targeted mass-spectrometry. We carried out direct measurements of metabolic fluxes emanating from glucose metabolism [7]. We found that in some cancer cells, a relatively large amount of glycolytic carbon was diverted into serine and glycine biosynthesis. Serine can be synthesized from a glycolytic intermediate, 3-phosphoglycerate (3PG). 3PG is oxidized by an enzyme phosphoglycerate dehydrogenase (PHGDH) in an NAD-dependent manner to generate phosphohydroxypyruvate which is transaminated and then dephosphorylated to generate serine. Serine hydroxymethyltransferase then donates the side-chain of serine to the Folate pool to generate glycine. We quantified the relative amount of glycolytic flux being diverted into serine and glycine biosynthesis and found that it was comparable to the amount of glucose passing through glycolysis and ultimately being converted to lactate. However, this large flux was observed to be present in only a subset of cultured cells. A non-tumorigenic breast epithelial cell line was found to have no detectable flux into serine and glycine biosynthesis. The observation that some but not all cancer cells divert a large amount of glycolytic flux into serine and glycine metabolism suggested that there might be a context in which this flux might be selected for in the development of cancer. To search for this context, we investigated a pooled analysis of 3131 human cancers [8]. This analysis revealed that PHGDH, the gene that encodes the first enzyme in this biosynthetic pathway branching off of glycolysis is frequently present in a region of recurrent, localized copy number gain at genomic locus 1p12 (q=1.18e-9). The amplification was most commonly found in melanoma but was observed in other cancers such as eosophageal adenocarcinoma and triplenegative breast cancer. We validated this finding in a collection of human melanoma tissue samples by comparing PHGDH expression in human tissues as measured by Immunohistochemistry with matched assessments of PHGDH copy number gain using fluorescence in situ hybridization. It was observed that PHGDH protein expression correlated with genomic copy number gain. To assess whether cells containing the amplification were differentially sensitive to inhibition of PHGDH expression, we considered a panel of tumor-derived human Melanoma cell lines. Each melanoma cell line with PGHDH amplification exhibited significant flux into serine biosynthesis. We then carried out an RNA interference study and found that decreased PHGDH expression by RNA interference impaired growth in cell lines containing amplification of PHGDH and resulted in a distinct metabolic phenotype marked by accumulation of glycolytic intermediates. PHGDH expression was also found to be associated with aggressive breast cancer subtypes. Since we observed no detectable flux in a non-tumorigenic breast epithelial cell line, we questioned whether enhanced PHGDH expression would have any phenotypic consequences. We considered the effects of PHGDH in a model of breast tissue morphogenesis [9]. In this model, ectopic expression of PHGDH in MCF10A cells induced loss of cell polarity, disruptions in nuclear architecture and rescue of anoikis – each being phenotypic alterations that predispose cells to tumorgenicity. Our findings demonstrate that altered metabolic flux stemming from glycolysis can be selected for in the development of cancer and contribute to cell transformation. Furthermore, our studies identify PHGDH as an attractive therapeutic target for subsets of human cancers.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis.

          Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A relativistic jetted outburst from a massive black hole fed by a tidally disrupted star

            While gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, the vast majority of MBHs are considered dormant. Occasionally, a star passing too near a MBH is torn apart by gravitational forces, leading to a bright panchromatic tidal disruption flare (TDF). While the high-energy transient Swift J164449.3+573451 ("Sw 1644+57") initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that the observations (Levan et al. 2011) suggest a sudden accretion event onto a central MBH of mass ~10^6-10^7 solar masses. We find evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 with a smaller-scale blazar. The phenomenologically novel Sw 1644+57 thus connects the study of TDFs and active galaxies, opening a new vista on disk-jet interactions in BHs and magnetic field generation and transport in accretion systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modelling glandular epithelial cancers in three-dimensional cultures.

              Little is known about how the genotypic and molecular abnormalities associated with epithelial cancers actually contribute to the histological phenotypes observed in tumours in vivo. 3D epithelial culture systems are a valuable tool for modelling cancer genes and pathways in a structurally appropriate context. Here, we review the important features of epithelial structures grown in 3D basement membrane cultures, and how such models have been used to investigate the mechanisms associated with tumour initiation and progression.
                Bookmark

                Author and article information

                Conference
                BMC Proc
                BMC Proc
                BMC Proceedings
                BioMed Central
                1753-6561
                2012
                1 June 2012
                : 6
                : Suppl 3
                : O15
                Affiliations
                [1 ]Harvard Medical School, Boston, MA, USA
                [2 ]Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA
                [3 ]Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
                Article
                1753-6561-6-S3-O15
                10.1186/1753-6561-6-S3-O15
                3374201
                a0fabe98-561a-4717-a361-d90156b4788c
                Copyright ©2012 Locasale et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Metabolism, diet and disease
                Washington, DC, USA
                29-31 May 2012
                History
                Categories
                Oral Presentation

                Medicine
                Medicine

                Comments

                Comment on this article