2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of eggshell as a bio-regeneration material

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The objective of this study was to identify and summarize the characteristic features of eggshell for regeneration purpose in oral surgery procedures.

          Methods

          A review of literature was undertaken based on the PubMed database. A search to reveal the current state of knowledge and the current uses of the eggshell as a biomaterial was performed. The characteristics of the materials, the specific use, the procedure and the outcome were extracted from the articles.

          Results

          The materials have been found to be used in humans, animals, and in vitro studies. There is a wide use regarding oral surgery especially in experimental models. There have also been attempts to enhance certain properties and improve the capabilities of eggshell as a biomaterial. There is yet a commercial product to be developed and approved for human use.

          Conclusions

          Eggshell can be an important biowaste which can be of use in guided bone regeneration procedures, but it has not yet entered the commercial phase and approval through official regulation channels.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation

          Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Modulation of the Inflammatory Response and Bone Healing

            The optimal treatment for complex fractures and large bone defects is an important unsolved issue in orthopedics and related specialties. Approximately 5–10% of fractures fail to heal and develop non-unions. Bone healing can be characterized by three partially overlapping phases: the inflammatory phase, the repair phase, and the remodeling phase. Eventual healing is highly dependent on the initial inflammatory phase, which is affected by both the local and systemic responses to the injurious stimulus. Furthermore, immune cells and mesenchymal stromal cells (MSCs) participate in critical inter-cellular communication or crosstalk to modulate bone healing. Deficiencies in this inter-cellular exchange, inhibition of the natural processes of acute inflammation, and its resolution, or chronic inflammation due to a persistent adverse stimulus can lead to impaired fracture healing. Thus, an initial and optimal transient stage of acute inflammation is one of the key factors for successful, robust bone healing. Recent studies demonstrated the therapeutic potential of immunomodulation for bone healing by the preconditioning of MSCs to empower their immunosuppressive properties. Preconditioned MSCs (also known as “primed/ licensed/ activated” MSCs) are cultured first with pro-inflammatory cytokines (e.g., TNFα and IL17A) or exposed to hypoxic conditions to mimic the inflammatory environment prior to their intended application. Another approach of immunomodulation for bone healing is the resolution of inflammation with anti-inflammatory cytokines such as IL4, IL10, and IL13. In this review, we summarize the principles of inflammation and bone healing and provide an update on cellular interactions and immunomodulation for optimal bone healing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors

              Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases expressed on the cell membrane that play crucial roles in both developmental and adult cells. Dysregulation of FGFRs has been implicated in a wide variety of cancers, such as urothelial carcinoma, hepatocellular carcinoma, ovarian cancer and lung adenocarcinoma. Due to their functional importance, FGFRs have been considered as promising drug targets for the therapy of various cancers. Multiple small molecule inhibitors targeting this family of kinases have been developed, and some of them are in clinical trials. Furthermore, the pan-FGFR inhibitor erdafitinib (JNJ-42756493) has recently been approved by the U.S. Food and Drug Administration (FDA) for the treatment of metastatic or unresectable urothelial carcinoma (mUC). This review summarizes the structure of FGFR, especially its kinase domain, and the development of small molecule FGFR inhibitors.
                Bookmark

                Author and article information

                Journal
                Med Pharm Rep
                Med Pharm Rep
                Med Pharm Rep
                Medicine and Pharmacy Reports
                Iuliu Hatieganu University of Medicine and Pharmacy
                2602-0807
                2668-0572
                January 2023
                25 January 2023
                : 96
                : 1
                : 93-100
                Affiliations
                Department of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
                Author notes
                Address for correspondence: Cristian Dinu dinu_christian@ 123456yahoo.com
                Article
                cm-96-93
                10.15386/mpr-2476
                9924816
                a1721cf7-04b1-4b6c-be68-ed20387d9a82
                Copyright @ 2023

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

                History
                : 27 December 2021
                : 02 April 2022
                : 02 May 2022
                Categories
                Original Research
                Dental Medicine

                egg shell,bone regeneration,oral surgical procedures

                Comments

                Comment on this article