5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      microRNA-497 prevents pancreatic cancer stem cell gemcitabine resistance, migration, and invasion by directly targeting nuclear factor kappa B 1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives: Cancer stem cells (CSCs) comprise a small population of cells in cancerous tumors and play a critical role in tumor resistance to chemotherapy. miRNAs have been reported to enhance the sensitivity of pancreatic cancer to chemotherapy. However, the underlying molecular mechanism requires better understanding.

          Methods: Cell viability and proliferation were examined with CCK8 assays. Quantitative real-time polymerase chain reaction was executed to assess mRNA expression. StarBase database was used to select the target genes of miRNA, which were further affirmed by dual luciferase assay. Transwell assay was used to analyze cell invasion and migration.

          Results: We proved that miR-497 could be obviously downregulated in pancreatic cancer tissues and CSCs from Aspc-1 and Bxpc-3 cells. In addition, inhibition of miR-497 evidently accelerated pancreatic CSC gemcitabine resistance, migration and invasion. Moreover, we revealed that nuclear factor kappa B 1 (NFκB1) was prominently upregulated in pancreatic cancer tissues and pancreatic CSCs, and NFκB1 was also identified as a direct target of miR-497. Furthermore, we demonstrated that overexpression of NFκB1 could also notably promote the viability, migration, and invasion of gemcitabine-treated pancreatic CSCs, but this effect could be partially abolished by miR-497 overexpression.

          Conclusions: Those findings suggest that miR-497 overexpression could suppress gemcitabine resistance and the metastasis of pancreatic CSCs and non-CSCs by directly targeting NFκB1.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found

          Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.

          Cancer incidence and deaths in the United States were projected for the most common cancer types for the years 2020 and 2030 based on changing demographics and the average annual percentage changes in incidence and death rates. Breast, prostate, and lung cancers will remain the top cancer diagnoses throughout this time, but thyroid cancer will replace colorectal cancer as the fourth leading cancer diagnosis by 2030, and melanoma and uterine cancer will become the fifth and sixth most common cancers, respectively. Lung cancer is projected to remain the top cancer killer throughout this time period. However, pancreas and liver cancers are projected to surpass breast, prostate, and colorectal cancers to become the second and third leading causes of cancer-related death by 2030, respectively. Advances in screening, prevention, and treatment can change cancer incidence and/or death rates, but it will require a concerted effort by the research and healthcare communities now to effect a substantial change for the future. ©2014 American Association for Cancer Research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine.

            In a phase 1-2 trial of albumin-bound paclitaxel (nab-paclitaxel) plus gemcitabine, substantial clinical activity was noted in patients with advanced pancreatic cancer. We conducted a phase 3 study of the efficacy and safety of the combination versus gemcitabine monotherapy in patients with metastatic pancreatic cancer. We randomly assigned patients with a Karnofsky performance-status score of 70 or more (on a scale from 0 to 100, with higher scores indicating better performance status) to nab-paclitaxel (125 mg per square meter of body-surface area) followed by gemcitabine (1000 mg per square meter) on days 1, 8, and 15 every 4 weeks or gemcitabine monotherapy (1000 mg per square meter) weekly for 7 of 8 weeks (cycle 1) and then on days 1, 8, and 15 every 4 weeks (cycle 2 and subsequent cycles). Patients received the study treatment until disease progression. The primary end point was overall survival; secondary end points were progression-free survival and overall response rate. A total of 861 patients were randomly assigned to nab-paclitaxel plus gemcitabine (431 patients) or gemcitabine (430). The median overall survival was 8.5 months in the nab-paclitaxel-gemcitabine group as compared with 6.7 months in the gemcitabine group (hazard ratio for death, 0.72; 95% confidence interval [CI], 0.62 to 0.83; P<0.001). The survival rate was 35% in the nab-paclitaxel-gemcitabine group versus 22% in the gemcitabine group at 1 year, and 9% versus 4% at 2 years. The median progression-free survival was 5.5 months in the nab-paclitaxel-gemcitabine group, as compared with 3.7 months in the gemcitabine group (hazard ratio for disease progression or death, 0.69; 95% CI, 0.58 to 0.82; P<0.001); the response rate according to independent review was 23% versus 7% in the two groups (P<0.001). The most common adverse events of grade 3 or higher were neutropenia (38% in the nab-paclitaxel-gemcitabine group vs. 27% in the gemcitabine group), fatigue (17% vs. 7%), and neuropathy (17% vs. 1%). Febrile neutropenia occurred in 3% versus 1% of the patients in the two groups. In the nab-paclitaxel-gemcitabine group, neuropathy of grade 3 or higher improved to grade 1 or lower in a median of 29 days. In patients with metastatic pancreatic adenocarcinoma, nab-paclitaxel plus gemcitabine significantly improved overall survival, progression-free survival, and response rate, but rates of peripheral neuropathy and myelosuppression were increased. (Funded by Celgene; ClinicalTrials.gov number, NCT00844649.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pancreatic cancer.

              Pancreatic cancer is a major cause of cancer-associated mortality, with a dismal overall prognosis that has remained virtually unchanged for many decades. Currently, prevention or early diagnosis at a curable stage is exceedingly difficult; patients rarely exhibit symptoms and tumours do not display sensitive and specific markers to aid detection. Pancreatic cancers also have few prevalent genetic mutations; the most commonly mutated genes are KRAS, CDKN2A (encoding p16), TP53 and SMAD4 - none of which are currently druggable. Indeed, therapeutic options are limited and progress in drug development is impeded because most pancreatic cancers are complex at the genomic, epigenetic and metabolic levels, with multiple activated pathways and crosstalk evident. Furthermore, the multilayered interplay between neoplastic and stromal cells in the tumour microenvironment challenges medical treatment. Fewer than 20% of patients have surgically resectable disease; however, neoadjuvant therapies might shift tumours towards resectability. Although newer drug combinations and multimodal regimens in this setting, as well as the adjuvant setting, appreciably extend survival, ∼80% of patients will relapse after surgery and ultimately die of their disease. Thus, consideration of quality of life and overall survival is important. In this Primer, we summarize the current understanding of the salient pathophysiological, molecular, translational and clinical aspects of this disease. In addition, we present an outline of potential future directions for pancreatic cancer research and patient management.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                31 July 2022
                25 July 2022
                : 14
                : 14
                : 5908-5924
                Affiliations
                [1 ]The Second Department of General Surgery, Zhuhai People’s Hospital, Zhuhai 51900, Guangdong, China
                [2 ]Department of Hepatobiliary Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian, China
                [3 ]Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361000, Fujian, China
                [4 ]The Third Department of Surgery, The Second Hospital of Longyan, Longyan 364000, Fujian, China
                [5 ]Department of Science and Education, The Second Hospital of Longyan, Longyan 364000, Fujian, China
                [6 ]Department of Pathology, The Second Hospital of Longyan, Longyan 364000, Fujian, China
                [7 ]The First People’s Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenzhou 317500, Zhejiang, China
                Author notes
                Correspondence to: Libo Yin; email: yinlibo001@163.com
                Correspondence to: Wenlong Zeng; email: wenlongzeng@163.com
                Article
                204193 204193
                10.18632/aging.204193
                9365558
                35896012
                a1b4fb59-1950-4cc3-8ade-5da89518528c
                Copyright: © 2022 Yu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 February 2022
                : 23 May 2022
                Categories
                Research Paper

                Cell biology
                microrna-497,nuclear factor kappa b 1,pancreatic cancer,cancer stem cells,gemcitabine
                Cell biology
                microrna-497, nuclear factor kappa b 1, pancreatic cancer, cancer stem cells, gemcitabine

                Comments

                Comment on this article