3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Post-Border Forest Biosecurity in Australia: Response to Recent Exotic Detections, Current Surveillance and Ongoing Needs

      ,
      Forests
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Assessing exotic pest response and eradication programs can identify factors that will lead to increased pest detection and provide information for prioritizing and enhancing future eradication attempts. We review the forest-related insect and pathogen detections and responses in Australia between 1996 and 2017. Thirty-four detections of new exotic forest species were made in this timeframe; seventeen each of insects and pathogens. Twenty-nine of the species are now established in mainland Australia and another in the Torres Strait. Four of the established species cause high impact, and three of these were subject to failed eradication programs. Two of the four established high-impact species were not previously recognised as threats; indeed, 85% of all new detections were not considered high-priority risks. Only one forest pest has been successfully eradicated, suggesting a lower success rate of Australian forest eradication programs than the world average. Most of these exotic pests and pathogens were not detected early enough to attempt eradication, or they were not deemed a significant enough pest to warrant an eradication attempt. Early detection is key to successful eradication. We discuss current surveillance programs in Australia and the methods (general, specific), locations (urban, regional, amenity, plantation, nursery, native forest), and surveillance type (public, industry, ad-hoc researcher, forest health surveillance, high-risk site surveillance, pest-specific trapping) that detections were made under. While there has been an increase in detections using specific surveillance since 2010, there remains a need for a structured national approach to forest biosecurity surveillance, preparedness, and responses.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Emerald Ash Borer Invasion of North America: History, Biology, Ecology, Impacts, and Management

          Since its accidental introduction from Asia, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has killed millions of ash trees in North America. As it continues to spread, it could functionally extirpate ash with devastating economic and ecological impacts. Little was known about EAB when it was first discovered in North America in 2002, but substantial advances in understanding of EAB biology, ecology, and management have occurred since. Ash species indigenous to China are generally resistant to EAB and may eventually provide resistance genes for introgression into North American species. EAB is characterized by stratified dispersal resulting from natural and human-assisted spread, and substantial effort has been devoted to the development of survey methods. Early eradication efforts were abandoned largely because of the difficulty of detecting and delineating infestations. Current management is focused on biological control, insecticide protection of high-value trees, and integrated efforts to slow ash mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biogeographical patterns and determinants of invasion by forest pathogens in Europe.

            A large database of invasive forest pathogens (IFPs) was developed to investigate the patterns and determinants of invasion in Europe. Detailed taxonomic and biological information on the invasive species was combined with country-specific data on land use, climate, and the time since invasion to identify the determinants of invasiveness, and to differentiate the class of environments which share territorial and climate features associated with a susceptibility to invasion. IFPs increased exponentially in the last four decades. Until 1919, IFPs already present moved across Europe. Then, new IFPs were introduced mainly from North America, and recently from Asia. Hybrid pathogens also appeared. Countries with a wider range of environments, higher human impact or international trade hosted more IFPs. Rainfall influenced the diffusion rates. Environmental conditions of the new and original ranges and systematic and ecological attributes affected invasiveness. Further spread of established IFPs is expected in countries that have experienced commercial isolation in the recent past. Densely populated countries with high environmental diversity may be the weakest links in attempts to prevent new arrivals. Tight coordination of actions against new arrivals is needed. Eradication seems impossible, and prevention seems the only reliable measure, although this will be difficult in the face of global mobility. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Economic Impacts of Non-Native Forest Insects in the Continental United States

              Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly $1.7 billion in local government expenditures and approximately $830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors.
                Bookmark

                Author and article information

                Journal
                Forests
                Forests
                MDPI AG
                1999-4907
                April 2019
                April 14 2019
                : 10
                : 4
                : 336
                Article
                10.3390/f10040336
                a20ce281-fb7d-4048-a63f-8ee351579f74
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article