39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anatomical heterogeneity of tendon: Fascicular and interfascicular tendon compartments have distinct proteomic composition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tendon is a simple aligned fibre composite, consisting of collagen-rich fascicles surrounded by a softer interfascicular matrix (IFM). The composition and interactions between these material phases are fundamental in ensuring tissue mechanics meet functional requirements. However the IFM is poorly defined, therefore tendon structure-function relationships are incompletely understood. We hypothesised that the IFM has a more complex proteome, with faster turnover than the fascicular matrix (FM). Using laser-capture microdissection and mass spectrometry, we demonstrate that the IFM contains more proteins, and that many proteins show differential abundance between matrix phases. The IFM contained more protein fragments (neopeptides), indicating greater matrix degradation in this compartment, which may act to maintain healthy tendon structure. Protein abundance did not alter with ageing, but neopeptide numbers decreased in the aged IFM, indicating decreased turnover which may contribute to age-related tendon injury. These data provide important insights into how differences in tendon composition and turnover contribute to tendon structure-function relationships and the effects of ageing.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Proteomics Identifications (PRIDE) database and associated tools: status in 2013

          The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C

            Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the 14C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of 14C, produced by nuclear bomb tests in 1955–1963, which is reflected in all living organisms. Levels of 14C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945–1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of 14C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of 14C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, 14C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.—Heinemeier, K. M., Schjerling, P., Heinemeier, J., Magnusson, S. P., Kjaer, M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo mechanical properties of the human Achilles tendon during one-legged hopping.

              Compliant tendons act as energy stores, which benefit the energetics and power output of a muscle-tendon unit. However the compliance of tendon and the material properties may vary between individuals and hence alter the energy storing capacity of the tendon. We aimed to determine the in vivo Achilles tendon (AT) stress and strain during one-legged hopping and hence the contribution of elastic recoil to mechanical energy changes. We simultaneously measured the length of the Achilles tendon from the muscle-tendon junction to the insertion on the calcaneous and the approximate AT force in ten male participants. The position of the muscle-tendon junction was determined using ultrasound images that were projected into three-dimensional space. Achilles tendon force was measured using inverse dynamics. The results demonstrated that one-legged hopping elicited high tendon strains and that the force-length relationship of the whole tendon is relatively linear, particularly at high strains. The stiffness, elastic modulus and hysteresis varied across the population (inter-quartile range of 145-231 N mm-1, 0.67-1.07 GPa and 17-35%, respectively). These values are within the reported biological range. An average of 38 J of energy was recovered from the elastic recoil of the tendon, which contributes 16% of the total average mechanical work of the hop (254 J). The high strains measured here (average peak strain was 8.3%) and in other studies may be possible due to the complex architecture of the Achilles tendon; however, prolonged hopping may well cause tendon damage. In conclusion, the properties of the elastic Achilles tendon can contribute significantly to the total mechanical work of the body during one-legged hopping; however, individual variation in the properties of the tendon vary the energy storing capacity of this structure.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                04 February 2016
                2016
                : 6
                : 20455
                Affiliations
                [1 ]Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London, E1 4NS, UK
                [2 ]Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool , Leahurst Campus, Neston, CH64 7TE, UK
                [3 ]Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, UK
                Author notes
                Article
                srep20455
                10.1038/srep20455
                4740843
                26842662
                a27638cd-8d88-4889-8947-43aaf901b39d
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 16 October 2015
                : 04 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article