61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stroke injury, cognitive impairment and vascular dementia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The global burden of ischaemic strokes is almost 4-fold greater than haemorrhagic strokes. Current evidence suggests that 25–30% of ischaemic stroke survivors develop immediate or delayed vascular cognitive impairment (VCI) or vascular dementia (VaD). Dementia after stroke injury may encompass all types of cognitive disorders. States of cognitive dysfunction before the index stroke are described under the umbrella of pre-stroke dementia, which may entail vascular changes as well as insidious neurodegenerative processes. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke and depressive illness. Neuroimaging determinants of dementia after stroke comprise silent brain infarcts, white matter changes, lacunar infarcts and medial temporal lobe atrophy. Until recently, the neuropathology of dementia after stroke was poorly defined. Most of post-stroke dementia is consistent with VaD involving multiple substrates. Microinfarction, microvascular changes related to blood–brain barrier damage, focal neuronal atrophy and low burden of co-existing neurodegenerative pathology appear key substrates of dementia after stroke injury. The elucidation of mechanisms of dementia after stroke injury will enable establishment of effective strategy for symptomatic relief and prevention. Controlling vascular disease risk factors is essential to reduce the burden of cognitive dysfunction after stroke. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.

          Highlights

          • Ischaemic injury is common among long-term stroke survivors

          • About 25% stroke survivors develop dementia with a much greater proportion developing cognitive impairment

          • Risk factors of dementia after stroke include older age, vascular comorbidities, prior stroke and pre-stroke impairment

          • Current imaging and pathological studies suggest 70% of dementia after stroke is vascular dementia

          • Severe white matter changes and medial temporal lobe atrophy as sequelae after ischaemic injury are substrates of dementia

          • Controlling vascular risk factors and prevention strategies related to lifestyle factors would reduce dementia after stroke

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop.

          Criteria for the diagnosis of vascular dementia (VaD) that are reliable, valid, and readily applicable in a variety of settings are urgently needed for both clinical and research purposes. To address this need, the Neuroepidemiology Branch of the National Institute of Neurological Disorders and Stroke (NINDS) convened an International Workshop with support from the Association Internationale pour la Recherche et l'Enseignement en Neurosciences (AIREN), resulting in research criteria for the diagnosis of VaD. Compared with other current criteria, these guidelines emphasize (1) the heterogeneity of vascular dementia syndromes and pathologic subtypes including ischemic and hemorrhagic strokes, cerebral hypoxic-ischemic events, and senile leukoencephalopathic lesions; (2) the variability in clinical course, which may be static, remitting, or progressive; (3) specific clinical findings early in the course (eg, gait disorder, incontinence, or mood and personality changes) that support a vascular rather than a degenerative cause; (4) the need to establish a temporal relationship between stroke and dementia onset for a secure diagnosis; (5) the importance of brain imaging to support clinical findings; (6) the value of neuropsychological testing to document impairments in multiple cognitive domains; and (7) a protocol for neuropathologic evaluations and correlative studies of clinical, radiologic, and neuropsychological features. These criteria are intended as a guide for case definition in neuroepidemiologic studies, stratified by levels of certainty (definite, probable, and possible). They await testing and validation and will be revised as more information becomes available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis.

            It has been suggested that total blood homocysteine concentrations are associated with the risk of ischemic heart disease (IHD) and stroke. To assess the relationship of homocysteine concentrations with vascular disease risk. MEDLINE was searched for articles published from January 1966 to January 1999. Relevant studies were identified by systematic searches of the literature for all reported observational studies of associations between IHD or stroke risk and homocysteine concentrations. Additional studies were identified by a hand search of references of original articles or review articles and by personal communication with relevant investigators. Studies were included if they had data available by January 1999 on total blood homocysteine concentrations, sex, and age at event. Studies were excluded if they measured only blood concentrations of free homocysteine or of homocysteine after a methionine-loading test or if relevant clinical data were unavailable or incomplete. Data from 30 prospective or retrospective studies involving a total of 5073 IHD events and 1113 stroke events were included in a meta-analysis of individual participant data, with allowance made for differences between studies, for confounding by known cardiovascular risk factors, and for regression dilution bias. Combined odds ratios (ORs) for the association of IHD and stroke with blood homocysteine concentrations were obtained by using conditional logistic regression. Stronger associations were observed in retrospective studies of homocysteine measured in blood collected after the onset of disease than in prospective studies among individuals who had no history of cardiovascular disease when blood was collected. After adjustment for known cardiovascular risk factors and regression dilution bias in the prospective studies, a 25% lower usual (corrected for regression dilution bias) homocysteine level (about 3 micromol/L [0.41 mg/L]) was associated with an 11% (OR, 0.89; 95% confidence interval [CI], 0.83-0.96) lower IHD risk and 19% (OR, 0.81; 95% CI, 0.69-0.95) lower stroke risk. This meta-analysis of observational studies suggests that elevated homocysteine is at most a modest independent predictor of IHD and stroke risk in healthy populations. Studies of the impact on disease risk of genetic variants that affect blood homocysteine concentrations will help determine whether homocysteine is causally related to vascular disease, as may large randomized trials of the effects on IHD and stroke of vitamin supplementation to lower blood homocysteine concentrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Change in stroke incidence, mortality, case-fatality, severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford Vascular Study).

              The incidence of stroke is predicted to rise because of the rapidly ageing population. However, over the past two decades, findings of randomised trials have identified several interventions that are effective in prevention of stroke. Reliable data on time-trends in stroke incidence, major risk factors, and use of preventive treatments in an ageing population are required to ascertain whether implementation of preventive strategies can offset the predicted rise in stroke incidence. We aimed to obtain these data. We ascertained changes in incidence of transient ischaemic attack and stroke, risk factors, and premorbid use of preventive treatments from 1981-84 (Oxford Community Stroke Project; OCSP) to 2002-04 (Oxford Vascular Study; OXVASC). Of 476 patients with transient ischaemic attacks or strokes in OXVASC, 262 strokes and 93 transient ischaemic attacks were incident events. Despite more complete case-ascertainment than in OCSP, age-adjusted and sex-adjusted incidence of first-ever stroke fell by 29% (relative incidence 0.71, 95% CI 0.61-0.83, p=0.0002). Incidence declined by more than 50% for primary intracerebral haemorrhage (0.47, 0.27-0.83, p=0.01) but was unchanged for subarachnoid haemorrhage (0.83, 0.44-1.57, p=0.57). Thus, although 28% more incident strokes (366 vs 286) were expected in OXVASC due to demographic change alone (33% increase in those aged 75 or older), the observed number fell (262 vs 286). Major reductions were recorded in mortality rates for incident stroke (0.63, 0.44-0.90, p=0.02) and in incidence of disabling or fatal stroke (0.60, 0.50-0.73, p<0.0001), but no change was seen in case-fatality due to incident stroke (17.2% vs 17.8%; age and sex adjusted relative risk 0.85, 95% CI 0.57-1.28, p=0.45). Comparison of premorbid risk factors revealed substantial reductions in the proportion of smokers, mean total cholesterol, and mean systolic and diastolic blood pressures and major increases in premorbid treatment with antiplatelet, lipid-lowering, and blood pressure lowering drugs (all p<0.0001). The age-specific incidence of major stroke in Oxfordshire has fallen by 40% over the past 20 years in association with increased use of preventive treatments and major reductions in premorbid risk factors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biochim Biophys Acta
                Biochim. Biophys. Acta
                Biochimica et Biophysica Acta
                Elsevier Pub. Co
                0006-3002
                1 May 2016
                May 2016
                : 1862
                : 5
                : 915-925
                Affiliations
                Institute of Neuroscience, Newcastle University, Campus for Ageing & Vitality, Newcastle upon Tyne, NE4 5PL, United Kingdom
                Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Nigeria
                Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
                Author notes
                [* ]Corresponding author at: Institute of Neuroscience, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, United Kingdom.Institute of NeuroscienceNIHR Biomedical Research Building, Campus for Ageing and VitalityWestgate RoadNewcastle upon TyneNE4 5PLUnited Kingdom r.n.kalaria@ 123456ncl.ac.uk
                Article
                S0925-4439(16)30002-3
                10.1016/j.bbadis.2016.01.015
                4827373
                26806700
                a5542f2f-111c-4ab5-84b6-c000c237874f
                © 2016 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 November 2015
                : 18 January 2016
                : 20 January 2016
                Categories
                Article

                Biochemistry
                alzheimer's disease,cognitive impairment,dementia,microinfarcts,neuroimaging,post-stroke dementia,stroke,white matter,vascular dementia

                Comments

                Comment on this article