3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MRGPRX2 signaling involves the Lysyl-tRNA synthetase and MITF pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MRGPRX2, a G-protein-coupled-seven transmembrane domain receptor, is mainly expressed in mast cells and neurons and is involved in skin immunity and pain. It is implicated in the pathophysiology of non-IgE-mediated immediate hypersensitivity and has been related to adverse drug reactions. Moreover, a role has been proposed in asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. Although it has a prominent role in disease, its signaling transduction is poorly understood. This study shows that MRGPRX2 activation with substance P increased Lysyl t-RNA synthetase (LysRS) translocation to the nucleus. LysRS is a moonlighting protein with a dual role in protein translation and IgE signaling in mast cells. Upon allergen- IgE-FcεRI crosslinking, LysRS is translocated to the nucleus and activates microphthalmia-associated transcription factor (MITF) activity. In this study, we found that MRGPRX2 triggering led to MITF phosphorylation and increased MITF activity. Therefore, overexpression of LysRS increased MITF activity after MRGPRX2 activation. MITF silencing reduced MRGPRX2-dependent calcium influx and mast cell degranulation. Furthermore, a MITF pathway inhibitor, ML329, impaired MITF expression, calcium influx, and mast cell degranulation. Moreover, drugs such as atracurium, vancomycin, and morphine, reported to induce MRGPRX2-dependent degranulation, increased MITF activity. Altogether, our data show that MRGPRX2 signaling enhances MITF activity, and its abrogation by silencing or inhibition resulted in defective MRGPRX2 degranulation. We conclude that MRGPRX2 signaling involves the LysRS and MITF pathway. Thus, MITF and MITF-dependent targets may be considered therapeutic approaches to treat pathologies where MRGPRX2 is implicated.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a mast cell specific receptor crucial for pseudo-allergic drug reactions

          Mast cells are primary effectors in allergic reactions, and may have significant roles in diseases by secreting histamine and various inflammatory and immunomodulatory substances 1,2 . While classically they are activated by IgE antibodies, a unique property of mast cells is their antibody-independent responsiveness to a range of cationic substances, collectively called basic secretagogues, including inflammatory peptides and drugs associated with allergic-type reactions 1,3 . Roles for these substances in pathology have prompted a decades-long search for their receptor(s). Here we report that basic secretagogues activate mouse mast cells in vitro and in vivo through a single receptor, MrgprB2, the orthologue of the human G-protein coupled receptor (GPCR) MrgprX2. Secretagogue-induced histamine release, inflammation, and airway contraction are abolished in MrgprB2 null mutant mice. Further, we show that most classes of FDA-approved peptidergic drugs associated with allergic-type injection-site reactions also activate MrgprB2 and MrgprX2, and that injection-site inflammation is absent in mutant mice. Finally, we determine that MrgprB2 and MrgprX2 are targets of many small molecule drugs associated with systemic pseudo-allergic, or anaphylactoid, reactions; we show that drug-induced symptoms of anaphylactoid responses are significantly reduced in knockout mice, and we identify a common chemical motif in several of these molecules that may help predict side effects of other compounds. These discoveries introduce a mouse model to study mast cell activation by basic secretagogues and identify MrgprX2 as a potential therapeutic target to reduce a subset of drug-induced adverse effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            REAP: A two minute cell fractionation method

            Background The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT. Findings We have developed a Rapid, Efficient And Practical (REAP) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence. Conclusions This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability.

              Kit/SCF signaling and Mitf-dependent transcription are both essential for melanocyte development and pigmentation. To identify Mitf-dependent Kit transcriptional targets in primary melanocytes, microarray studies were undertaken. Among identified targets was BCL2, whose germline deletion produces melanocyte loss and which exhibited phenotypic synergy with Mitf in mice. BCL2's regulation by Mitf was verified in melanocytes and melanoma cells and by chromatin immunoprecipitation of the BCL2 promoter. Mitf also regulates BCL2 in osteoclasts, and both Mitf(mi/mi) and Bcl2(-/-) mice exhibit severe osteopetrosis. Disruption of Mitf in melanocytes or melanoma triggered profound apoptosis susceptible to rescue by BCL2 overexpression. Clinically, primary human melanoma expression microarrays revealed tight nearest neighbor linkage for MITF and BCL2. This linkage helps explain the vital roles of both Mitf and Bcl2 in the melanocyte lineage and the well-known treatment resistance of melanoma.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                10 May 2023
                2023
                : 14
                : 1154108
                Affiliations
                [1] 1 Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona , Barcelona, Spain
                [2] 2 Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
                [3] 3 Faculty of Health Sciences, Technical University of Ambato , Ambato, Ecuador
                [4] 4 Allergy Department, Hospital Clinic, University of Barcelona , Barcelona, Spain
                [5] 5 Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III , Madrid, Spain
                Author notes

                Edited by: Ulrich Blank, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France

                Reviewed by: Guido Falduto, University of Pittsburgh, United States; Ivan Dzhagalov, National Yang Ming Chiao Tung University, Taiwan

                *Correspondence: Margarita Martín, martin_andorra@ 123456ub.edu
                Article
                10.3389/fimmu.2023.1154108
                10206166
                37234172
                a6a4aafb-664e-420b-bffa-6c3f1811606e
                Copyright © 2023 Guo, Ollé, Proaño-Pérez, Aparicio, Guerrero, Muñoz-Cano and Martín

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 January 2023
                : 03 April 2023
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 73, Pages: 12, Words: 5329
                Funding
                Funded by: Ministerio de Ciencia, Innovación y Universidades , doi 10.13039/100014440;
                Grant PID2021-122898OB-100 funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe,” by the “European Union” or by the “European Union NextGeneration EU/PRTR” and Thematic Networks and Co-operative Research Centres: RICORS RD21/0002/0058.
                Categories
                Immunology
                Original Research
                Custom metadata
                Molecular Innate Immunity

                Immunology
                mrgprx2,lysrs,mitf,mast cell degranulation,adverse drug reactions
                Immunology
                mrgprx2, lysrs, mitf, mast cell degranulation, adverse drug reactions

                Comments

                Comment on this article