28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pleistocene climate change promoted rapid diversification of aquatic invertebrates in Southeast Australia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Pleistocene Ice Ages were the most recent geohistorical event of major global impact, but their consequences for most parts of the Southern hemisphere remain poorly known. We investigate a radiation of ten species of Sternopriscus, the most species-rich genus of epigean Australian diving beetles. These species are distinct based on genital morphology but cannot be distinguished readily by mtDNA and nDNA because of genotype sharing caused by incomplete lineage sorting. Their genetic similarity suggests a Pleistocene origin.

          Results

          We use a dataset of 3858 bp of mitochondrial and nuclear DNA to reconstruct a phylogeny of Sternopriscus using gene and species trees. Diversification analyses support the finding of a recent rapid speciation event with estimated speciation rates of up to 2.40 species per MY, which is considerably higher than the proposed average rate of 0.16 species per MY for insects. Additionally, we use ecological niche modeling and analyze data on habitat preferences to test for niche divergence between species of the recent Sternopriscus radiation. These analyses show that the species can be characterized by a set of ecological variables referring to habitat, climate and altitude.

          Conclusions

          Our results suggest that the repeated isolation of populations in glacial refugia might have led to divergent ecological adaptations and the fixation of morphological traits supporting reproductive isolation and therefore may have promoted speciation. The recent Sternopriscus radiation fulfills many characteristics of a species flock and would be the first described example of an aquatic insect species flock. We argue that the species of this group may represent a stage in speciation past the species flock condition because of their mostly broad and often non-overlapping ranges and preferences for different habitat types.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Measuring the accuracy of diagnostic systems.

          J Swets (1988)
          Diagnostic systems of several kinds are used to distinguish between two classes of events, essentially "signals" and "noise". For them, analysis in terms of the "relative operating characteristic" of signal detection theory provides a precise and valid measure of diagnostic accuracy. It is the only measure available that is uninfluenced by decision biases and prior probabilities, and it places the performances of diverse systems on a common, easily interpreted scale. Representative values of this measure are reported here for systems in medical imaging, materials testing, weather forecasting, information retrieval, polygraph lie detection, and aptitude testing. Though the measure itself is sound, the values obtained from tests of diagnostic systems often require qualification because the test data on which they are based are of unsure quality. A common set of problems in testing is faced in all fields. How well these problems are handled, or can be handled in a given field, determines the degree of confidence that can be placed in a measured value of accuracy. Some fields fare much better than others.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography.

            A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration.

              Phylogenetic trees in insects are frequently dated by applying a "standard" mitochondrial DNA (mtDNA) clock estimated at 2.3% My(-1), but despite its wide use reliable calibration points have been lacking. Here, we used a well-established biogeographic barrier, the mid-Aegean trench separating the western and eastern Aegean archipelago, to estimate substitution rates in tenebrionid beetles. Cytochrome oxidase I (cox1) for six codistributed genera across 28 islands (444 individuals) on both sides of the mid-Aegean trench revealed 60 independently coalescing entities delimited with a mixed Yule-coalescent model. One representative per entity was used for phylogenetic analysis of mitochondrial (cox1, 16S rRNA) and nuclear (Mp20, 28S rRNA) genes. Six nodes marked geographically congruent east-west splits whose separation was largely contemporaneous and likely to reflect the formation of the mid-Aegean trench at 9-12 Mya. Based on these "known" dates, a divergence rate of 3.54% My(-1) for the cox1 gene (2.69% when combined with the 16S rRNA gene) was obtained under the preferred partitioning scheme and substitution model selected using Bayes factors. An extensive survey suggests that discrepancies in mtDNA substitution rates in the entomological literature can be attributed to the use of different substitution models, the use of different mitochondrial gene regions, mixing of intraspecific with interspecific data, and not accounting for variance in coalescent times or postseparation gene flow. Different treatments of these factors in the literature confound estimates of mtDNA substitution rates in opposing directions and obscure lineage-specific differences in rates when comparing data from various sources.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2012
                9 August 2012
                : 12
                : 142
                Affiliations
                [1 ]Zoologische Staatssammlung, Münchhausenstr. 21, Munich, 81247, Germany
                [2 ]Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
                [3 ]School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
                [4 ]GeoBioCenter, Ludwig-Maximilians-Universität, Richard-Wagner-Str. 10, Munich, 80333, Germany
                Article
                1471-2148-12-142
                10.1186/1471-2148-12-142
                3503846
                22873814
                a7b5e074-2c53-46e6-9503-c733cad32f6a
                Copyright ©2012 Hawlitschek et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 February 2012
                : 30 July 2012
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article