9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of sex/gender-specific medicine in healthcare

      research-article
      Korean Journal of Women Health Nursing
      Korean Society of Women Health Nursing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction The study of differences between men and women in medicine is referred to as “sex/gender-specific medicine” (SGM) and is crucial in medical practice. In 2021, I published the Korean version of Sex/Gender-Specific Medicine in the Gastrointestinal Diseases [1], and its English version [2] was published by Springer, a top-tier publisher, in 2022. This book has been recognized as a textbook that systematizes the concept of SGM and may be the first medical book related to SGM in South Korea (hereafter, Korea). When I first introduced the concept of SGM to acquaintances, I remember they searched Google with awkward facial expressions, thinking it referred to research on sexual minorities. Thus, SGM is not yet universally known in Korea. My interest in SGM began in 2014 when I participated in the Gendered Innovation Workshop between Stanford University and the Korean Federation of Women’s Science and Technology Associations (KOFWST). While assisting Professor Mi-Kyung Sung from the Department of Food and Nutrition at Sookmyung Women’s University with her presentation on colorectal cancer from a clinical perspective, I became interested in SGM in colorectal cancer. Subsequently, in 2013, I began researching SGM earnestly as a participant in the Korean Center for Gendered Innovations for Science and Technology Research (GISTeR) established under KOFWST. In 2016, I was able to conduct balanced research on both basic and clinical SGM as a participant in the “Promoting Excellence and Practicability of Science and Technology Research through Gendered Innovation” project of the Ministry of Science, ICT and Future Planning. The “Sex and Gender Research in Medical Science” classes held in 2017 and 2019 at the Graduate School of Translational Medicine at Seoul National University College of Medicine received positive feedback from medical students. Later, Sex/Gender-Specific Medicine in Clinical Areas was published [3] with 33 experts in each clinical area. In this paper, I aim to review the concept and necessity of SGM and the challenges and implications it presents to healthcare, practitioners, researchers, and students within the sex/gender-specific framework. Definition and necessity of sex/gender-specific medicine SGM is important because even for the same disease, there are differences between men and women, and a different approach is necessary to identify the causes and provide treatment. These differences in SGM should be considered in two aspects: the sex aspect due to the differences in hormones or genes, and the gender aspect due to the difference in social and cultural roles between men and women. Although it is generally believed that there is no difference in the occurrence of diseases between men and women, the reality is that sex and gender shape both the occurrence and clinical course of diseases. SGM conducts research on these differences between men and women to achieve more accurate diagnosis and treatment directions, such as in bowel diseases where differences between men and women are particularly important. Men and women often exhibit different symptoms of diseases and responses to treatment, which are caused by the effects of sex hormones or genetic predispositions, or by different sociocultural conditions that impact the diseases. In particular, gender considerations are crucial in gastrointestinal diseases such as functional dyspepsia and irritable bowel syndrome because these diseases are highly likely to occur due to stress, and the stress experienced by men and women is different due to gender differences. It is natural to pay attention to the physical differences between men and women when dealing with the human body, and medicine has made progress by considering these differences. However, it is also true that the differences between men and women have not yet been adequately considered for most diseases’ causes or treatments. Fortunately, with the discovery of various sex/gender differences, research on sex/gender bias of disease occurrence is being actively conducted. Although most physicians in Korea are still unfamiliar with the term “sex/gender-specific medicine,” it is clear that the development of SGM will be an unstoppable trend from the macroscopic perspective of medical development. Why sex/gender-specific medicine appeared Before the 1980s, every area of our society was male-centered, including the medical field. The medical field was male-centered enough to have the viewpoint that “a woman is a little man.” As a result, the diagnosis and treatment of most diseases were conducted with men at the center. Unfortunately, this bias led to the development of modern medicine that did not consider sex/gender differences, resulting in tragic cases. Here are some examples. Thalidomide Thalidomide, which was called a miracle cure for morning sickness, received the most attention [4]. Thalidomide was first developed as a sedative in 1953 and marketed in 1957 under the brand name Contergan by Grünenthal Pharmaceuticals. Although clinical trials on humans were not conducted properly, adverse effects were rarely revealed in various animal experiments such as rats and rabbits. The drug was advertised as “a miracle drug with no adverse effects” and sold as a sedative and sleeping pill that could be purchased without a doctor’s prescription in about 50 countries around the world. Many pregnant women used it, particularly for soothing morning sickness. However, its danger was revealed when pregnant women who took this drug between 1960 and 1961 gave birth to deformed babies. Until sales were completely suspended in 1962, more than 10,000 deformed babies were born (Figure 1). Research on the drug revealed that taking it before the 42nd day of pregnancy resulted in the birth of a deformed baby with missing limbs, very short limbs, the complete absence of fingers or toes, or the absence of some fingers or toes due to the adverse effect of suppressing angiogenesis. Later, during the process of developing new drugs, it was belatedly realized that humans, especially women and pregnant women, should be considered. Like the thalidomide case, after experiencing fatal adverse effects of drugs in women, women were excluded from clinical trials due to concerns about their fertility and unpredictable results. Researchers preferred to include only men in clinical trials in order to maintain other variables as consistent as possible except the drug. Women’s menstrual cycles and hormone changes were also considered factors that made clinical trials difficult. This trend has gradually changed since the 1990s, when the U.S. Food and Drug Administration (FDA) changed the research guidelines to include women in clinical trials [5]. However, there have been no significant changes in Korea yet. Cisapride The U.S. Government Accountability Office investigated 10 drugs withdrawn from the market between 1997 and 2021 due to adverse effects and found that eight of them showed a higher risk in women than in men. One reason for this is that women took those drugs more often, such as appetite suppressants. In some cases, physical differences between men and women caused more fatal adverse effects in women, such as with cisapride (brand name, Prepulsid; Janssen-Ortho). Cisapride is a drug that stimulates gastrointestinal motility by acting on serotonin receptors. It was first developed in 1980 and has been widely used to treat gastrointestinal diseases, including reflux esophagitis. As a gastroenterologist, I prescribed the drug frequently. In 2000, it was shocking to learn that a 15-year-old Canadian girl named Vanessa Young, who was prescribed the drug for stomach discomfort due to bulimia, had died of a heart attack. It was later discovered that cisapride could cause fatal cardiac arrhythmia, and the pharmaceutical company voluntarily stopped selling it [6]. This was a major surprise for gastroenterologists who prescribed the drug frequently. The QT interval, the length between the Q and T waves in an electrocardiogram, tends to be longer in women than in men. Cisapride made the QT interval longer, causing fatal arrhythmia and cardiac arrest, especially in women (Figure 2). Zolpidem Zolpidem, a sleeping medication, has recently become a concern. In 2011, Lindsey Schweigert woke up in the back seat of a police car wearing her nightgown, but she could not remember why she was there, no matter how hard she tried. Later, it was discovered that this was due to symptoms such as sleepwalking as an adverse effect of zolpidem [7]. About 700 car accidents related to zolpidem were reported in the United States alone. It was confirmed that the rate of metabolism and excretion in the body after taking the drug is slower in women than in men, and a higher blood drug concentration is maintained in women than in men. In 2013, the FDA recommended that people taking zolpidem avoid driving or work that requires concentration the day after taking it. It was also recommended to lower the first prescription dose to 5 mg, half the previous dose, for women [8]. This case may also have occurred due to not considering the differences between men and women in the initial process of developing the drug and determining the dose. Why are the adverse effects of drugs different between men and women? These discrepancies are primarily due to physiological differences. Zolpidem is absorbed well by fat. Since women have more body fat than men, the drug remains in women’s bodies longer. In addition, since men’s and women’s heart rates differ, cisapride may cause more fatal cases of arrhythmia in women. Changes in female hormones can also affect drug metabolism through the liver, and the smaller size of a woman’s kidney slows down the excretion rate of drugs. Since women have smaller body weight and surface area, the same dose of a drug may have a greater effect on them than on men. In addition to these physical differences, women tend to complain of chronic symptoms more than men, and therefore take more drugs, which exposes them more frequently to interactions among drugs. Therefore, it is necessary to consider sex/gender differences when developing drugs or using existing drugs. History of sex/gender-specific medicine In the late 1980s, concerns about sex/gender bias in clinical trials and drug development were raised, prompting the U.S. National Institutes of Health (NIH) to announce a principle that women must be included in clinical trials [9]. The NIH’s policy was proposed as a law in 1993, requiring the inclusion of women and ethnic minorities in all human research. In phase 3 clinical trials, it was recommended to include sufficient numbers of women and ethnic minorities for subgroup analysis in the verification process of the treatment effect and to prohibit the exclusion of subjects due to cost [10]. At that time, the importance of SGM, which had previously been neglected, received attention and was recommended as a policy, but those recommendations were often not reflected in actual clinical trials [11,12]. However, starting about 10 years ago, SGM received attention in earnest, as major research grant institutions implemented regulations requiring SGM to be considered clinical trials [12]. Since funding is essential to conduct research, these regulations seem to be the most effective way to ensure that SGM is sufficiently addressed. The Canadian Institutes of Health Research (CIHR) since 2010 [13], the European Commission since 2014 [14], and the NIH since 2015 [10] have required that research grant applications must stipulate whether the research considers sex or gender and sex as a biological variable in research design, analysis, and reporting processes [9]. After GISTeR of KOFWST persuaded the National Research Foundation of Korea (NRF) and the Ministry of Health and Welfare (MOHW) that extra points should be given to research on sex/gender, NRF and MOHW research grants have taken a cautious approach, such as awarding extra points for female principal investigators and the inclusion of appended documents related to SGM. Along with the regulations on research grants, academic journals also play a significant role in promoting SGM. In 2014, the editors-in-chief of major biomedical journals gathered to discuss the problem that even research published in influential academic journals could not be replicated in follow-up experiments, and they pointed out that the insufficient consideration of sex/gender in the experiment and reporting processes was a major factor contributing to this problem [9]. Many academic journals have subsequently made it clear that they will consider the application of SGM in preclinical and clinical trials when reviewing articles, which has led researchers to pay more attention to the importance of SGM [15]. Numerous editors have become sympathetic to the fact that many published research articles do not even mention “male” or “female” in animal experiments or present separate analyses for men and women. In November 2017, KOFWST hosted a lecture entitled “Gender Application Cases in International Biomedical and Health Journals,” which introduced SGM to the editors-in-chief of biomedical journals in Korea, leading to the inclusion of content on SGM in the editorial policy of each journal [9]. Over the years, efforts to introduce SGM in biomedical research have led to the inclusion of content related to SGM in the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines and recommendations of the International Committee of Medical Journal Editors, as well as the publication of SGM guidelines such as the SAGER (Sex and Gender Equity in Research) guidelines [16-18]. Additionally, information on SGM is readily available through online resources such as the Gendered Innovations Center at Stanford University and the Institute of Gender and Health under CIHR [9]. Progress in this area is steady. Examples of sex/gender-specific medicine Research on SGM has revealed that there are significant differences between men and women in various medical areas such as myocardial infarction, heart failure, autoimmune diseases, depression, thyroid diseases, and diabetes. Applying these differences to medical treatment has led to significant outcomes. For example, the main symptom of myocardial infarction is chest pain in men, while women experience heartburn and chest tightness as the primary symptoms. Prior to SGM, only chest pain was recognized as the primary symptom, resulting in misdiagnosis and delayed treatment for women presenting with heartburn and chest tightness. However, SGM has led to proper identification of these symptoms and improved medical outcomes. Additionally, it was discovered that the treadmill test was less accurate for women, but was still performed equally on both men and women [19]. The advent of SGM led to the recognition that the treadmill test should be performed differently for men and women to reduce errors. These examples demonstrate the necessity of SGM in achieving better medical outcomes. The difference between sex and gender The differences between men and women in terms of hormones and genes are the main reasons why they show differences in diseases (Figure 3) [20]. Hormone differences are widely known, but genetic differences are not as well-known. Recent research has revealed that genetic differences between men and women are around 1%; this may seem like a small difference, but it is actually quite substantial, since the genetic difference between humans and chimpanzees is only 1.2%. These differences in hormones and genetics can contribute to differences in diseases between men and women. Other biological differences to consider are reproductive function and sex hormone concentrations, as well as the fact that women tend to have a higher percentage of body fat than men. Moreover, social and cultural factors related to gender differences also have a major impact on the development of diseases. These factors can include differences in behavior, lifestyle, and social experiences. For instance, it is already known that there are substantial differences in thoughts and behaviors between men and women, and it has been discovered that these differences can be associated with the development of certain diseases [21]. However, biological differences and gender differences are so closely related that it can be difficult to determine which of them have a greater influence on the development of diseases. For instance, men tend to show aggression due to their vigorous secretion of testosterone. This trait leads to aggressive behaviors and creates an environment that is more susceptible to health risks, indicating that a biological trait can influence gender. In such cases, it is not clear whether biological or gender impacts should be prioritized. Conversely, gendered behaviors can alter biological factors. For example, poor lifestyle habits such as alcohol consumption or excessive stress can cause genetic mutations in adults, children, and even fetuses. One clear fact is that although biological differences are crucial when young, gender differences become even more critical as individuals age. Therefore, more research should be conducted in the future, and the development of SGM will be determined accordingly. These efforts will undoubtedly aid in disease treatments and significantly impact healthy life expectancy. Concluding remarks Although the field of SGM is expanding and more researchers, clinicians, and students are recognizing it as a component of personalized medicine, it has not yet been fully developed as a field of study. Unfortunately, many people still misunderstand SGM as research related to the women’s movement or sexual minorities. The reason for the emergence of SGM is to ultimately improve patient treatment outcomes. However, research in this field is still in its early stages, and Korea is in its infancy. To accurately identify differences in diseases between men and women, more scientists in medicine, nursing, and related health fields need to take an interest in researching and studying them. Moreover, continuing attempts to apply and promote SGM among healthcare practitioners, researchers, and students will help propel it forward in earnest.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research

          In the last decade the number of bioscience journals has increased enormously, with many filling specialised niches reflecting new disciplines and technologies. The emergence of open-access journals has revolutionised the publication process, maximising the availability of research data. Nevertheless, a wealth of evidence shows that across many areas, the reporting of biomedical research is often inadequate, leading to the view that even if the science is sound, in many cases the publications themselves are not “fit for purpose,” meaning that incomplete reporting of relevant information effectively renders many publications of limited value as instruments to inform policy or clinical and scientific practice [1]–[21]. A recent review of clinical research showed that there is considerable cumulative waste of financial resources at all stages of the research process, including as a result of publications that are unusable due to poor reporting [22]. It is unlikely that this issue is confined to clinical research [2]–[14],[16]–[20]. Failure to describe research methods and to report results appropriately therefore has potential scientific, ethical, and economic implications for the entire research process and the reputation of those involved in it. This is particularly true for animal research, one of the most controversial areas of science. The largest and most comprehensive review of published animal research undertaken to date, to our knowledge, has highlighted serious omissions in the way research using animals is reported [5]. The survey, commissioned by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), a UK Government-sponsored scientific organisation, found that only 59% of the 271 randomly chosen articles assessed stated the hypothesis or objective of the study, and the number and characteristics of the animals used (i.e., species/strain, sex, and age/weight). Most of the papers surveyed did not report using randomisation (87%) or blinding (86%) to reduce bias in animal selection and outcome assessment. Only 70% of the publications that used statistical methods fully described them and presented the results with a measure of precision or variability [5]. These findings are a cause for concern and are consistent with reviews of many research areas, including clinical studies, published in recent years [2]–[22]. Good Reporting Is Essential for Peer Review and to Inform Future Research Scrutiny by scientific peers has long been the mainstay of “quality control” for the publication process. The way that experiments are reported, in terms of the level of detail of methods and the presentation of key results, is crucial to the peer review process and, indeed, the subsequent utility and validity of the knowledge base that is used to inform future research. The onus is therefore on the research community to ensure that their research articles include all relevant information to allow in-depth critique, and to avoiding duplicating studies and performing redundant experiments. Ideally scientific publications should present sufficient information to allow a knowledgeable reader to understand what was done, why, and how, and to assess the biological relevance of the study and the reliability and validity of the findings. There should also be enough information to allow the experiment to be repeated [23]. The problem therefore is how to ensure that all relevant information is included in research publications. Using Reporting Guidelines Measurably Improves the Quality of Reporting Evidence provided by reviews of published research suggests that many researchers and peer reviewers would benefit from guidance about what information should be provided in a research article. The CONSORT Statement for randomised controlled clinical trials was one of the first guidelines developed in response to this need [24],[25]. Since publication, an increasing number of leading journals have supported CONSORT as part of their instructions to authors [26],[27]. As a result, convincing evidence is emerging that CONSORT improves the quality and transparency of reports of clinical trials [28],[29]. Following CONSORT, many other guidelines have been developed—there are currently more than 90 available for reporting different types of health research, most of which have been published in the last ten years (see http://www.equator-network.org and references [30],[31]). Guidelines have also been developed to improve the reporting of other specific bioscience research areas including metabolomics and gene expression studies [32]–[37]. Several organisations support the case for improved reporting and recommend the use of reporting guidelines, including the International Committee of Medical Journal Editors, the Council of Science Editors, the Committee on Publication Ethics, and the Nuffield Council for Bioethics [38]–[41]. Improving the Reporting of Animal Experiments—The ARRIVE Guidelines Most bioscience journals currently provide little or no guidance on what information to report when describing animal research [42]–[50]. Our review found that 4% of the 271 journal articles assessed did not report the number of animals used anywhere in the methods or the results sections [5]. Reporting animal numbers is essential so that the biological and statistical significance of the experimental results can be assessed or the data reanalysed, and is also necessary if the experimental methods are to be repeated. Improved reporting of these and other details will maximise the availability and utility of the information gained from every animal and every experiment, preventing unnecessary animal use in the future. To address this, we led an initiative to produce guidelines for reporting animal research. The guidelines, referred to as ARRIVE (Animals in Research: Reporting In Vivo Experiments), have been developed using the CONSORT Statement as their foundation [24],[25]. The ARRIVE guidelines consist of a checklist of 20 items describing the minimum information that all scientific publications reporting research using animals should include, such as the number and specific characteristics of animals used (including species, strain, sex, and genetic background); details of housing and husbandry; and the experimental, statistical, and analytical methods (including details of methods used to reduce bias such as randomisation and blinding). All the items in the checklist have been included to promote high-quality, comprehensive reporting to allow an accurate critical review of what was done and what was found. Consensus and consultation are the corner-stones of the guideline development process [51]. To maximise their utility, the ARRIVE guidelines have been prepared in consultation with scientists, statisticians, journal editors, and research funders. We convened an expert working group, comprising researchers and statisticians from a range of disciplines, and journal editors from Nature Cell Biology, Science, Laboratory Animals, and the British Journal of Pharmacology (see Acknowledgments). At a one-day meeting in June 2009, the working group agreed the scope and broad content of a draft set of guidelines that were then used as the basis for a wider consultation with the scientific community, involving researchers, and grant holders and representatives of the major bioscience funding bodies including the Medical Research Council, Wellcome Trust, Biotechnology and Biological Sciences Research Council, and The Royal Society (see Table 1). Feedback on the content and wording of the items was incorporated into the final version of the checklist. Further feedback on the content utility of the guidelines is encouraged and sought. 10.1371/journal.pbio.1000412.t001 Table 1 Funding bodies consulted. Name of Bioscience Research Funding Body Medical Research Council Biotechnology and Biological Sciences Research Council Wellcome Trust The Royal Society Association of Medical Research Charities British Heart Foundation Parkinson's Disease Society The ARRIVE guidelines (see Table 2) can be applied to any area of bioscience research using laboratory animals, and the inherent principles apply not only to reporting comparative experiments but also to other study designs. Laboratory animal refers to any species of animal undergoing an experimental procedure in a research laboratory or formal test setting. The guidelines are not intended to be mandatory or absolutely prescriptive, nor to standardise or formalise the structure of reporting. Rather they provide a checklist that can be used to guide authors preparing manuscripts for publication, and by those involved in peer review for quality assurance, to ensure completeness and transparency. 10.1371/journal.pbio.1000412.t002 Table 2 Animal Research: Reporting In Vivo experiments: The ARRIVE guidelines. ITEM RECOMMENDATION TITLE 1 Provide as accurate and concise a description of the content of the article as possible. ABSTRACT 2 Provide an accurate summary of the background, research objectives (including details of the species or strain of animal used), key methods, principal findings, and conclusions of the study. INTRODUCTION Background 3 a. Include sufficient scientific background (including relevant references to previous work) to understand the motivation and context for the study, and explain the experimental approach and rationale.b. Explain how and why the animal species and model being used can address the scientific objectives and, where appropriate, the study's relevance to human biology. Objectives 4 Clearly describe the primary and any secondary objectives of the study, or specific hypotheses being tested. METHODS Ethical statement 5 Indicate the nature of the ethical review permissions, relevant licences (e.g. Animal [Scientific Procedures] Act 1986), and national or institutional guidelines for the care and use of animals, that cover the research. Study design 6 For each experiment, give brief details of the study design, including:a. The number of experimental and control groups.b. Any steps taken to minimise the effects of subjective bias when allocating animals to treatment (e.g., randomisation procedure) and when assessing results (e.g., if done, describe who was blinded and when).c. The experimental unit (e.g. a single animal, group, or cage of animals).A time-line diagram or flow chart can be useful to illustrate how complex study designs were carried out. Experimental procedures 7 For each experiment and each experimental group, including controls, provide precise details of all procedures carried out. For example:a. How (e.g., drug formulation and dose, site and route of administration, anaesthesia and analgesia used [including monitoring], surgical procedure, method of euthanasia). Provide details of any specialist equipment used, including supplier(s).b. When (e.g., time of day).c. Where (e.g., home cage, laboratory, water maze).d. Why (e.g., rationale for choice of specific anaesthetic, route of administration, drug dose used). Experimental animals 8 a. Provide details of the animals used, including species, strain, sex, developmental stage (e.g., mean or median age plus age range), and weight (e.g., mean or median weight plus weight range).b. Provide further relevant information such as the source of animals, international strain nomenclature, genetic modification status (e.g. knock-out or transgenic), genotype, health/immune status, drug- or test-naïve, previous procedures, etc. Housing and husbandry 9 Provide details of:a. Housing (e.g., type of facility, e.g., specific pathogen free (SPF); type of cage or housing; bedding material; number of cage companions; tank shape and material etc. for fish).b. Husbandry conditions (e.g., breeding programme, light/dark cycle, temperature, quality of water etc. for fish, type of food, access to food and water, environmental enrichment).c. Welfare-related assessments and interventions that were carried out before, during, or after the experiment. Sample size 10 a. Specify the total number of animals used in each experiment and the number of animals in each experimental group.b. Explain how the number of animals was decided. Provide details of any sample size calculation used.c. Indicate the number of independent replications of each experiment, if relevant. Allocating animals to experimental groups 11 a. Give full details of how animals were allocated to experimental groups, including randomisation or matching if done.b. Describe the order in which the animals in the different experimental groups were treated and assessed. Experimental outcomes 12 Clearly define the primary and secondary experimental outcomes assessed (e.g., cell death, molecular markers, behavioural changes). Statistical methods 13 a. Provide details of the statistical methods used for each analysis.b. Specify the unit of analysis for each dataset (e.g. single animal, group of animals, single neuron).c. Describe any methods used to assess whether the data met the assumptions of the statistical approach. RESULTS Baseline data 14 For each experimental group, report relevant characteristics and health status of animals (e.g., weight, microbiological status, and drug- or test-naïve) before treatment or testing (this information can often be tabulated). Numbers analysed 15 a. Report the number of animals in each group included in each analysis. Report absolute numbers (e.g. 10/20, not 50%a).b. If any animals or data were not included in the analysis, explain why. Outcomes and estimation 16 Report the results for each analysis carried out, with a measure of precision (e.g., standard error or confidence interval). Adverse events 17 a. Give details of all important adverse events in each experimental group.b. Describe any modifications to the experimental protocols made to reduce adverse events. DISCUSSION Interpretation/scientific implications 18 a. Interpret the results, taking into account the study objectives and hypotheses, current theory, and other relevant studies in the literature.b. Comment on the study limitations including any potential sources of bias, any limitations of the animal model, and the imprecision associated with the resultsa.c. Describe any implications of your experimental methods or findings for the replacement, refinement, or reduction (the 3Rs) of the use of animals in research. Generalisability/translation 19 Comment on whether, and how, the findings of this study are likely to translate to other species or systems, including any relevance to human biology. Funding 20 List all funding sources (including grant number) and the role of the funder(s) in the study. a Schulz, et al. (2010) [24]. Improved Reporting Will Maximise the Output of Published Research These guidelines were developed to maximise the output from research using animals by optimising the information that is provided in publications on the design, conduct, and analysis of the experiments. The need for such guidelines is further illustrated by the systematic reviews of animal research that have been carried out to assess the efficacy of various drugs and interventions in animal models [8],[9],[13],[52]–[55]. Well-designed and -reported animal studies are the essential building blocks from which such a systematic review is constructed. The reviews have found that, in many cases, reporting omissions, in addition to the limitations of the animal models used in the individual studies assessed in the review, are a barrier to reaching any useful conclusion about the efficacy of the drugs and interventions being compared [2],[3]. Driving improvements in reporting research using animals will require the collective efforts of authors, journal editors, peer reviewers, and funding bodies. There is no single simple or rapid solution, but the ARRIVE guidelines provide a practical resource to aid these improvements. The guidelines will be published in several leading bioscience research journals simultaneously [56]–[60], and publishers have already endorsed the guidelines by including them in their journal Instructions to Authors subsequent to publication. The NC3Rs will continue to work with journal editors to extend the range of journals adopting the guidelines, and with the scientific community to disseminate the guidelines as widely as possible (http://www.nc3rs.org.uk/ARRIVE).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sex and Gender Equity in Research: rationale for the SAGER guidelines and recommended use

            Background Sex and gender differences are often overlooked in research design, study implementation and scientific reporting, as well as in general science communication. This oversight limits the generalizability of research findings and their applicability to clinical practice, in particular for women but also for men. This article describes the rationale for an international set of guidelines to encourage a more systematic approach to the reporting of sex and gender in research across disciplines. Methods A panel of 13 experts representing nine countries developed the guidelines through a series of teleconferences, conference presentations and a 2-day workshop. An internet survey of 716 journal editors, scientists and other members of the international publishing community was conducted as well as a literature search on sex and gender policies in scientific publishing. Results The Sex and Gender Equity in Research (SAGER) guidelines are a comprehensive procedure for reporting of sex and gender information in study design, data analyses, results and interpretation of findings. Conclusions The SAGER guidelines are designed primarily to guide authors in preparing their manuscripts, but they are also useful for editors, as gatekeepers of science, to integrate assessment of sex and gender into all manuscripts as an integral part of the editorial process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Thalidomide‐induced teratogenesis: History and mechanisms

              Nearly 60 years ago thalidomide was prescribed to treat morning sickness in pregnant women. What followed was the biggest man‐made medical disaster ever, where over 10,000 children were born with a range of severe and debilitating malformations. Despite this, the drug is now used successfully to treat a range of adult conditions, including multiple myeloma and complications of leprosy. Tragically, a new generation of thalidomide damaged children has been identified in Brazil. Yet, how thalidomide caused its devastating effects in the forming embryo remains unclear. However, studies in the past few years have greatly enhanced our understanding of the molecular mechanisms the drug. This review will look at the history of the drug, and the range and type of damage the drug caused, and outline the mechanisms of action the drug uses including recent molecular advances and new findings. Some of the remaining challenges facing thalidomide biologists are also discussed. Birth Defects Research (Part C) 105:140–156, 2015. © 2015 The Authors Birth Defects Research Part C: Embryo Today: Reviews Published by Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Korean J Women Health Nurs
                Korean J Women Health Nurs
                KJWHN
                Korean Journal of Women Health Nursing
                Korean Society of Women Health Nursing
                2287-1640
                2093-7695
                31 March 2023
                31 March 2023
                : 29
                : 1
                : 5-11
                Affiliations
                Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
                Author notes
                Corresponding author: Nayoung Kim Department of Internal Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173 beon-gil, Bundang-gu, Seongnam 13620, Korea Tel: +82-31-787-8441 E-mail: nakim49@ 123456snu.ac.kr
                Author information
                http://orcid.org/0000-0002-9397-0406
                Article
                kjwhn-2023-03-13
                10.4069/kjwhn.2023.03.13
                10085661
                37037446
                a824a8d9-3a48-4f9e-bd87-27e5a98ac298
                Copyright © 2023 Korean Society of Women Health Nursing

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 March 2023
                : 14 March 2023
                Categories
                Issues and Perspectives

                Comments

                Comment on this article