22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrative analysis of C. elegans modENCODE ChIP-seq data sets to infer gene regulatory interactions

      research-article
      , 2
      Genome Research
      Cold Spring Harbor Laboratory Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The C. elegans modENCODE Consortium has defined in vivo binding sites for a large array of transcription factors by ChIP-seq. In this article, we present examples that illustrate how this compendium of ChIP-seq data can drive biological insights not possible with analysis of individual factors. First, we analyze the number of independent factors bound to the same locus, termed transcription factor complexity, and find that low-complexity sites are more likely to respond to altered expression of a single bound transcription factor. Next, we show that comparison of binding sites for the same factor across developmental stages can reveal insight into the regulatory network of that factor, as we find that the transcription factor UNC-62 has distinct binding profiles at different stages due to distinct cofactor co-association as well as tissue-specific alternative splicing. Finally, we describe an approach to infer potential regulators of gene expression changes found in profiling experiments (such as DNA microarrays) by screening these altered genes to identify significant enrichment for targets of a transcription factor identified in ChIP-seq data sets. After confirming that this approach can correctly identify the upstream regulator on expression data sets for which the regulator was previously known, we applied this approach to identify novel candidate regulators of transcriptional changes with age. The analysis revealed nine candidate aging regulators, of which three were previously known to have a role in longevity. We experimentally showed that two of the new candidate aging regulators can extend lifespan when overexpressed, indicating that this approach can identify novel functional regulators of complex processes.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            WebLogo: a sequence logo generator.

            WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment. Sequence logos provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive. Each logo consists of stacks of letters, one stack for each position in the sequence. The overall height of each stack indicates the sequence conservation at that position (measured in bits), whereas the height of symbols within the stack reflects the relative frequency of the corresponding amino or nucleic acid at that position. WebLogo has been enhanced recently with additional features and options, to provide a convenient and highly configurable sequence logo generator. A command line interface and the complete, open WebLogo source code are available for local installation and customization. Copyright 2004 Cold Spring Harbor Laboratory Press
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcription factors: from enhancer binding to developmental control.

              Developmental progression is driven by specific spatiotemporal domains of gene expression, which give rise to stereotypically patterned embryos even in the presence of environmental and genetic variation. Views of how transcription factors regulate gene expression are changing owing to recent genome-wide studies of transcription factor binding and RNA expression. Such studies reveal patterns that, at first glance, seem to contrast with the robustness of the developmental processes they encode. Here, we review our current knowledge of transcription factor function from genomic and genetic studies and discuss how different strategies, including extensive cooperative regulation (both direct and indirect), progressive priming of regulatory elements, and the integration of activities from multiple enhancers, confer specificity and robustness to transcriptional regulation during development.
                Bookmark

                Author and article information

                Journal
                Genome Res
                Genome Res
                GENOME
                Genome Research
                Cold Spring Harbor Laboratory Press
                1088-9051
                1549-5469
                June 2013
                : 23
                : 6
                : 941-953
                Affiliations
                [1]Department of Genetics and Department of Developmental Biology, Stanford University Medical Center, Stanford, California 94305, USA
                Author notes
                [1]

                Present address: Department of Cellular & Molecular Medicine, University of California at San Diego, La Jolla, California, 92037.

                [2 ]Corresponding author E-mail stuartkm@ 123456stanford.edu
                Article
                9518021
                10.1101/gr.152876.112
                3668362
                23531767
                a8d6d2a5-56c9-4f95-9803-e3cbdd81ecd7
                © 2013, Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.

                History
                : 30 November 2012
                : 18 March 2013
                Page count
                Pages: 13
                Categories
                Research

                Comments

                Comment on this article