5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNA-532-5p protects against cerebral ischemia-reperfusion injury by directly targeting CXCL1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the function of microRNA (miR)-532-5p in cerebral ischemia-reperfusion injury (CI/RI) and the underlying mechanisms using oxygen-glucose deprivation and reperfusion (OGD/R)-treated SH-SY5Y cells and middle cerebral artery occlusion (MCAO) model rats. MiR-532-5p levels were significantly downregulated in OGD/R-treated SH-SY5Y cells and the brain tissues of MCAO model rats. MiR-532-5p overexpression significantly reduced apoptosis, reactive oxygen species (ROS), and inflammation in the OGD/R-induced SH-SY5Y cells. Bioinformatics analysis using the targetscan and miRDB databases as well as dual luciferase reporter assays confirmed that miR-532-5p directly binds to the 3’UTR of C-X-C Motif Ligand 1 (CXCL1). Methylation-specific PCR (MSP) analysis showed that miR-532-5p expression was reduced in OGD/R-treated SH-SY5Y cells because of miR-532-5p promoter hypermethylation. Moreover, 5-azacytidine, a methylation inhibitor, restored miR-532-5p expression in OGD/R-treated SH-SY5Y cells. Brain tissues of MCAO model rats showed significantly increased cerebral infarction areas, cerebral water, neuronal apoptosis, and activated CXCL1/CXCR2/NF-κB signaling, but these effects were alleviated by intraventricular injection of miR-532-5p agomir. These findings demonstrate that miR-532-5p overexpression significantly reduces in vitro and in vivo CI/RI by targeting CXCL1. Thus, miR-532-5p is a potential therapeutic target for patients with CI/RI.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Crosstalk between NFκB-dependent astrocytic CXCL1 and neuron CXCR2 plays a role in descending pain facilitation

          Background Despite accumulating evidence on the role of glial cells and their associated chemicals in mechanisms of pain, few studies have addressed the potential role of chemokines in the descending facilitation of chronic pain. We aimed to study the hypothesis that CXCL1/CXCR2 axis in the periaqueductal gray (PAG), a co-restructure of the descending nociceptive system, is involved in descending pain facilitation. Methods Intramedullary injection of Walker 256 mammary gland carcinoma cells of adult female Sprague Dawley rats was used to establish a bone cancer pain (BCP) model. RT-PCR, Western blot, and immunohistochemistry were performed to detect pNfkb, Cxcl1, and Cxcr2 and their protein expression in the ventrolateral PAG (vlPAG). Immunohistochemical co-staining with NeuN, GFAP, and CD11 were used to examine the cellular location of pNFκB, CXCL1, and CXCR2. The effects of NFκB and CXCR2 antagonists and CXCL1 neutralizing antibody on pain hypersensitivity were evaluated by behavioral testing. Results BCP induced cortical bone damage and persistent mechanical allodynia and increased the expression of pNFκB, CXCL1, and CXCR2 in vlPAG. The induced phosphorylation of NFκB was co-localized with GFAP and NeuN, but not with CD11. Micro-injection of BAY11-7082 attenuated BCP and reduced CXCL1 increase in the spinal cord. The expression level of CXCL1 in vlPAG showed co-localization with GFAP, but not with CD11 and NeuN. Micro-administration of CXCL1 neutralizing antibody from 6 to 9 days after inoculation attenuated mechanical allodynia. Furthermore, vlPAG application of CXCL1 elicited pain hypersensitivity in normal rats. Interestingly, CXCR2 was upregulated in vlPAG neurons (not with CD11 and GFAP) after BCP. CXCR2 antagonist SB225002 completely blocked the CXCL1-induced mechanical allodynia and attenuated BCP-induced pain hypersensitivity. Conclusion The NFκB-dependent CXCL1-CXCR2 signaling cascade played a role in glial-neuron interactions and in descending facilitation of BCP. Electronic supplementary material The online version of this article (10.1186/s12974-018-1391-2) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice

            Background Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, and inflammation has been considered crucial components of the pathogenesis of depression. NLRP1 inflammasome-driven inflammatory response is believed to participate in many neurological disorders. However, it is unclear whether NLRP1 inflammasome is implicated in the development of depression. Methods Animal models of depression were established by four different chronic stress stimuli including chronic unpredictable mild stress (CUMS), chronic restrain stress (CRS), chronic social defeat stress (CSDS), and repeat social defeat stress (RSDS). Depressive-like behaviors were determined by sucrose preference test (SPT), forced swim test (FST), tail-suspension test (TST), open-field test (OFT), social interaction test (SIT), and light-dark test (LDT). The expression of NLRP1 inflammasome complexes, BDNF, and CXCL1/CXCR2 were tested by western blot and quantitative real-time PCR. The levels of inflammatory cytokines were tested by enzyme-linked immunosorbent assay (ELISA) kits. Nlrp1a knockdown was performed by an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA-eGFP infusion. Results Chronic stress stimuli activated hippocampal NLRP1 inflammasome and promoted the release of pro-inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α in mice. Hippocampal Nlrp1a knockdown prevented NLRP1 inflammasome-driven inflammatory response and ameliorated stress-induced depressive-like behaviors. Also, chronic stress stimuli caused the increase in hippocampal CXCL1/CXCR2 expression and low BDNF levels in mice. Interestingly, Nlrp1a knockdown inhibited the up-regulation of CXCL1/CXCR2 expression and restored BDNF levels in the hippocampus. Conclusions NLRP1 inflammasome-driven inflammatory response contributes to chronic stress induced depressive-like behaviors and the mechanism may be related to CXCL1/CXCR2/BDNF signaling pathway. Thus, NLRP1 inflammasome could become a potential antidepressant target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke.

              MicroRNAs (miRNAs) are present in serum and have the potential to serve as disease biomarkers. As such, it is important to explore the clinical value of miRNAs in serum as biomarkers for ischemic stroke (IS) and cast light on the pathogenesis of IS. In this study, we screened differentially expressed serum miRNAs from IS and normal people by miRNA microarray analysis, and validated the expression of candidate miRNAs using quantitative reverse-transcriptase polymerase chain reaction assays. Furthermore, we performed gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses to disclose functional enrichment of genes predicted to be regulated by the differentially expressed miRNAs. Notably, our results revealed that 115 miRNAs were differentially expressed in IS, among which miR-32-3p, miR-106-5p, and miR-532-5p were first found to be associated with IS. In addition, GO and KEGG pathway analyses showed that genes predicted to be regulated by differentially expressed miRNAs were significantly enriched in several related biological process and pathways, including axon guidance, glioma, MAPK signaling, mammalian target of rapamycin signaling, and ErbB-signaling pathway. In conclusion, we identified the changed expression pattern of miRNAs in IS. Serum miR-32-3p, miR-106-5p, miR-1246, and miR-532-5p may serve as potential diagnostic biomarkers for IS. Our results also demonstrate a novel role for miRNAs in the pathogenesis of IS.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                30 April 2021
                18 April 2021
                : 13
                : 8
                : 11528-11541
                Affiliations
                [1 ]Department of Neurology and Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224001, Jiangsu, China
                [2 ]Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu, China
                [3 ]Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224001, Jiangsu, China
                Author notes
                [*]

                Equal contribution

                Correspondence to: Yun Xu; email: xuyun@nju.edu.cn
                Correspondence to: Pinglei Pan; email: plpan@njmu.edu.cn
                Article
                202846 202846
                10.18632/aging.202846
                8109118
                33867350
                a8e71d3d-954e-451f-93e5-cbc6fd4b6973
                Copyright: © 2021 Shi et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 November 2020
                : 14 March 2021
                Categories
                Research Paper

                Cell biology
                mir-532-5p,cxcl1,cxcr2,nf-κb
                Cell biology
                mir-532-5p, cxcl1, cxcr2, nf-κb

                Comments

                Comment on this article