38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Partial Deletion of Chromosome 8 β-defensin Cluster Confers Sperm Dysfunction and Infertility in Male Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes ( DefbΔ9) in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility.

          Author Summary

          β-defensins are small molecules, considered primarily to be antimicrobials and important in the first defence response to invading organisms. They are predominantly produced at surfaces in contact with the outside environment and these include skin, airway and reproductive tract. We show here that when we delete from the mouse a subset of nine β-defensin genes, surprisingly the main consequence is that the male mice are completely infertile. When normal sperm leave the male and enter the female reproductive tract they are triggered to undergo a reaction that alters the membrane properties of the sperm and allows fertilisation. We show here that sperm isolated from the male mice, that no longer make these β-defensins, are prematurely ready to fertilise an egg. It is far too early for this to happen and as a consequence the sperm are severely reduced in their ability to move and have a major defect in the structure of their tail. We provide evidence that the reason this has happened is due to a dysregulation of calcium transport. This work is important for understanding defensin gene function in a living organism and may enable the design of novel contraceptives with additional antibiotic ability.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Psoriasis is associated with increased beta-defensin genomic copy number.

          Psoriasis is a common inflammatory skin disease with a strong genetic component. We analyzed the genomic copy number polymorphism of the beta-defensin region on human chromosome 8 in 179 Dutch individuals with psoriasis and 272 controls and in 319 German individuals with psoriasis and 305 controls. Comparisons in both cohorts showed a significant association between higher genomic copy number for beta-defensin genes and risk of psoriasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            β-Defensins: multifunctional modulators of infection, inflammation and more?

            Defensins comprise one of the largest groups of host defence peptides, present throughout evolution, in fungi and flowering plants as well as in invertebrates and vertebrates. These cysteine-rich, cationic peptides have a common ability to kill a broad range of microorganisms including bacteria, yeast and viruses. As such, they are a strong component of the arsenal that is an organism's innate immunity. It is becoming increasingly clear, however, that antimicrobial action is only one of the numerous roles of these multifunctional peptides. In recent years, the functions of defensins in immunomodulation have been widely investigated, and their involvement in other processes (such as fertility) is becoming evident. This review addresses recent advances in the immunomodulatory activity of β-defensins as well as the involvement of β-defensins in fertility, development, wound healing and cancer. Copyright © 2012 S. Karger AG, Basel.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discovery of five conserved beta -defensin gene clusters using a computational search strategy.

              The innate immune system includes antimicrobial peptides that protect multicellular organisms from a diverse spectrum of microorganisms. beta-Defensins comprise one important family of mammalian antimicrobial peptides. The annotation of the human genome fails to reveal the expected diversity, and a recent query of the draft sequence with the blast search engine found only one new beta-defensin gene (DEFB3). To define better the beta-defensin gene family, we adopted a genomics approach that uses hmmer, a computational search tool based on hidden Markov models, in combination with blast. This strategy identified 28 new human and 43 new mouse beta-defensin genes in five syntenic chromosomal regions. Within each syntenic cluster, the gene sequences and organization were similar, suggesting each cluster pair arose from a common ancestor and was retained because of conserved functions. Preliminary analysis indicates that at least 26 of the predicted genes are transcribed. These results demonstrate the value of a genomewide search strategy to identify genes with conserved structural motifs. Discovery of these genes represents a new starting point for exploring the role of beta-defensins in innate immunity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2013
                October 2013
                24 October 2013
                : 9
                : 10
                : e1003826
                Affiliations
                [1 ]MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
                [2 ]Reproductive and Developmental Biology, Medical School, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom
                [3 ]EM Research Services, Newcastle Medical School, Newcastle University, Newcastle, England, United Kingdom
                [4 ]School of Chemistry, Joseph Black Building, Edinburgh, Scotland
                Stanford University School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JRD ST YSZ SW PB. Performed the experiments: YSZ SW LL ST FK CT HM FS PT TB AH PD PP TD. Analyzed the data: YSZ ST JRD. Contributed reagents/materials/analysis tools: PP CLB. Wrote the paper: JRD YSZ.

                [¤]

                Current address: R&D Andrology Division, Minitube of America, Mount Horeb, Wisconsin, United States of America.

                Article
                PGENETICS-D-13-01433
                10.1371/journal.pgen.1003826
                3812073
                24204287
                a8ef5743-44ca-44d4-91b6-6624f662f500
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 May 2013
                : 9 August 2013
                Page count
                Pages: 13
                Funding
                This work was supported entirely by the Medical Research Council funding awarded to Edinburgh University IGMM MRC Human Genetics Unit. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article