36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14

      research-article
      ,
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interpolar microtubules are sorted by the directional instability resulting from antagonistic molecular motors, not a stable balance of force.

          Abstract

          During cell division, different molecular motors act synergistically to rearrange microtubules. Minus end–directed motors are thought to have a dual role: focusing microtubule ends to poles and establishing together with plus end–directed motors a balance of force between antiparallel microtubules in the spindle. We study here the competing action of Xenopus laevis kinesin-14 and -5 in vitro in situations in which these motors with opposite directionality cross-link and slide microtubules. We find that full-length kinesin-14 can form microtubule asters without additional factors, whereas kinesin-5 does not, likely reflecting an adaptation to mitotic function. A stable balance of force is not established between two antiparallel microtubules with these motors. Instead, directional instability is generated, promoting efficient motor and microtubule sorting. A nonmotor microtubule cross-linker can suppress directional instability but also impedes microtubule sorting, illustrating a conflict between stability and dynamicity of organization. These results establish the basic organizational properties of these antagonistic mitotic motors and a microtubule bundler.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen.

          Small molecules that perturb specific protein functions are valuable tools for dissecting complex processes in mammalian cells. A combination of two phenotype-based screens, one based on a specific posttranslational modification, the other visualizing microtubules and chromatin, was used to identify compounds that affect mitosis. One compound, here named monastrol, arrested mammalian cells in mitosis with monopolar spindles. In vitro, monastrol specifically inhibited the motility of the mitotic kinesin Eg5, a motor protein required for spindle bipolarity. All previously known small molecules that specifically affect the mitotic machinery target tubulin. Monastrol will therefore be a particularly useful tool for studying mitotic mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer.

            Microtubules can be assembled in vitro from purified alpha/beta tubulin heterodimers in the presence of GTP. Tubulin is routinely obtained from animal brain tissue through repetitive cycles of polymerization-depolymerization, followed by ion-exchange chromatography to remove any contaminating microtubule-associated proteins and motors. Here, we show that only two cycles of polymerization-depolymerization of pig brain tubulin in the presence of a high-molarity PIPES buffer allow the efficient removal of contaminating proteins and production of a high-concentration tubulin solution. The proposed protocol is rapid and yields more active tubulin than the traditional ion-exchange chromatography-based procedures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks.

              During cell division, mitotic spindles are assembled by microtubule-based motor proteins. The bipolar organization of spindles is essential for proper segregation of chromosomes, and requires plus-end-directed homotetrameric motor proteins of the widely conserved kinesin-5 (BimC) family. Hypotheses for bipolar spindle formation include the 'push-pull mitotic muscle' model, in which kinesin-5 and opposing motor proteins act between overlapping microtubules. However, the precise roles of kinesin-5 during this process are unknown. Here we show that the vertebrate kinesin-5 Eg5 drives the sliding of microtubules depending on their relative orientation. We found in controlled in vitro assays that Eg5 has the remarkable capability of simultaneously moving at approximately 20 nm s(-1) towards the plus-ends of each of the two microtubules it crosslinks. For anti-parallel microtubules, this results in relative sliding at approximately 40 nm s(-1), comparable to spindle pole separation rates in vivo. Furthermore, we found that Eg5 can tether microtubule plus-ends, suggesting an additional microtubule-binding mode for Eg5. Our results demonstrate how members of the kinesin-5 family are likely to function in mitosis, pushing apart interpolar microtubules as well as recruiting microtubules into bundles that are subsequently polarized by relative sliding.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                3 May 2010
                : 189
                : 3
                : 465-480
                Affiliations
                Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
                Author notes
                Correspondence to Thomas Surrey: surrey@ 123456embl.de
                Article
                200910125
                10.1083/jcb.200910125
                2867311
                20439998
                aa20b780-3603-4e93-a79b-0fdc2d9633a7
                © 2010 Hentrich and Surrey

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 22 October 2009
                : 2 April 2010
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article