63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Wnt-Frz/Ror-Dsh Pathway Regulates Neurite Outgrowth in Caenorhabditis elegans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P) outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is composed of the Wnt ligand CWN-2, the Frizzled receptors CFZ-2 and MIG-1, the co-receptor CAM-1/Ror, and the downstream component Dishevelled/DSH-1. Among these, CWN-2 acts as a local attractive cue for neurite outgrowth, and its activity can be partially substituted with other Wnts, suggesting that spatial distribution plays a role in the functional specificity of Wnts. As a co-receptor, CAM-1 functions cell-autonomously in neurons and, together with CFZ-2 and MIG-1, transmits the Wnt signal to downstream effectors. Yeast two-hybrid screening identified DSH-1 as a binding partner for CAM-1, indicating that CAM-1 could facilitate CWN-2/Wnt signaling by its physical association with DSH-1. Our study reveals an important role of a Wnt-Frz/Ror-Dsh pathway in regulating neurite A/P outgrowth.

          Author Summary

          How do individual nerve fibers find their way along specific paths in a complex environment such as the developing central nervous system? A principal mechanism in axon guidance is binding of a receptor protein on the axon surface to a guidance molecule. However, it remains a mystery exactly how a limited number of guidance molecules can pilot the growth of billions of neurons. In this study, we used the nematode worm Caenorhabditis elegans to establish a system to follow the outgrowth of a single neurite. We then searched for genes affecting neurite development and uncovered a guidance molecule, CWN-2 (a member of the well-known Wnt family of signaling proteins), which attracts neurite growth. We also identified two Wnt receptors (CFZ-2 and MIG-1, from the Frizzled family), a co-receptor (CAM-1, from the Ror family), and an effector (DSH-1, from the Dsh family). Together these proteins convey the Wnt guidance signal into the neurite and influence its growth. In addition, our study reveals that the restricted spatial localization of the Wnt signal, together with the specific combination of Wnt receptors and effectors expressed in the neurite, are important for the complex function of guidance molecules.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular mechanisms of axon guidance.

          Axons are guided along specific pathways by attractive and repulsive cues in the extracellular environment. Genetic and biochemical studies have led to the identification of highly conserved families of guidance molecules, including netrins, Slits, semaphorins, and ephrins. Guidance cues steer axons by regulating cytoskeletal dynamics in the growth cone through signaling pathways that are still only poorly understood. Elaborate regulatory mechanisms ensure that a given cue elicits the right response from the right axons at the right time but is otherwise ignored. With such regulatory mechanisms in place, a relatively small number of guidance factors can be used to generate intricate patterns of neuronal wiring.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin.

            Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The molecular biology of axon guidance.

              Neuronal growth cones navigate over long distances along specific pathways to find their correct targets. The mechanisms and molecules that direct this pathfinding are the topics of this review. Growth cones appear to be guided by at least four different mechanisms: contact attraction, chemoattraction, contact repulsion, and chemorepulsion. Evidence is accumulating that these mechanisms act simultaneously and in a coordinated manner to direct pathfinding and that they are mediated by mechanistically and evolutionarily conserved ligand-receptor systems.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2010
                August 2010
                12 August 2010
                : 6
                : 8
                : e1001056
                Affiliations
                [1 ]Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
                [2 ]Graduate School, Chinese Academy of Sciences, Beijing, China
                Harvard University, United States of America
                Author notes

                Conceived and designed the experiments: SS BZ XH MD. Performed the experiments: SS BZ HS XH. Analyzed the data: SS BZ XL XH MD. Contributed reagents/materials/analysis tools: XL YX ZL. Wrote the paper: SS BZ XH MD.

                Article
                10-PLGE-RA-2459R2
                10.1371/journal.pgen.1001056
                2920835
                20711352
                aac70ed2-4bc6-43a8-a851-c405da9c87b3
                Song et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 25 January 2010
                : 8 July 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Developmental Biology/Neurodevelopment

                Genetics
                Genetics

                Comments

                Comment on this article