3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gd3+ Doped CoFe2O4 Nanoparticles for Targeted Drug Delivery and Magnetic Resonance Imaging

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoparticles of CoGdxFe2 − xO4 (x = 0%, 25%, 50%) synthesized via sol–gel auto combustion technique and encapsulated within a polymer (Eudragit E100) shell containing curcumin by single emulsion solvent evaporation technique were formulated in this study. Testing of synthesized nanoparticles was carried out by using different characterization techniques, to investigate composition, crystallinity, size, morphology, surface charge, functional groups and magnetic properties of the samples. The increased hydrophilicity resulted in sustained drug release of 90.6% and 95% for E1(CoGd0.25Fe1.75O4) and E2(CoGd0.50Fe1.5O4), respectively, over a time span of 24 h. The relaxivities of the best-chosen samples were measured by using a 3T magnetic resonance imaging (MRI) machine, and a high r2/r1 ratio of 43.64 and 23.34 for composition E1(CoGd0.25Fe1.75O4) and E2(CoGd0.50Fe1.5O4) suggests their ability to work as a better T2 contrast agent. Thus, these novel synthesized nanostructures cannot only enable MRI diagnosis but also targeted drug delivery.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems

          Lipid-based drug delivery systems, or lipidic carriers, are being extensively employed to enhance the bioavailability of poorly-soluble drugs. They have the ability to incorporate both lipophilic and hydrophilic molecules and protecting them against degradation in vitro and in vivo. There is a number of physical attributes of lipid-based nanocarriers that determine their safety, stability, efficacy, as well as their in vitro and in vivo behaviour. These include average particle size/diameter and the polydispersity index (PDI), which is an indication of their quality with respect to the size distribution. The suitability of nanocarrier formulations for a particular route of drug administration depends on their average diameter, PDI and size stability, among other parameters. Controlling and validating these parameters are of key importance for the effective clinical applications of nanocarrier formulations. This review highlights the significance of size and PDI in the successful design, formulation and development of nanosystems for pharmaceutical, nutraceutical and other applications. Liposomes, nanoliposomes, vesicular phospholipid gels, solid lipid nanoparticles, transfersomes and tocosomes are presented as frequently-used lipidic drug carriers. The advantages and limitations of a range of available analytical techniques used to characterize lipidic nanocarrier formulations are also covered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exchange-coupled magnetic nanoparticles for efficient heat induction.

            The conversion of electromagnetic energy into heat by nanoparticles has the potential to be a powerful, non-invasive technique for biotechnology applications such as drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this Letter, we demonstrate a significant increase in the efficiency of magnetic thermal induction by nanoparticles. We take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the nanoparticle and maximize the specific loss power, which is a gauge of the conversion efficiency. The optimized core-shell magnetic nanoparticles have specific loss power values that are an order of magnitude larger than conventional iron-oxide nanoparticles. We also perform an antitumour study in mice, and find that the therapeutic efficacy of these nanoparticles is superior to that of a common anticancer drug.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantum dots for live cells, in vivo imaging, and diagnostics.

              Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MAGNCZ
                Magnetochemistry
                Magnetochemistry
                MDPI AG
                2312-7481
                April 2021
                March 30 2021
                : 7
                : 4
                : 47
                Article
                10.3390/magnetochemistry7040047
                aaf2e82d-79a1-478b-897b-ed4085e4ea32
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article