3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical experience with lung-specific electromagnetic transponders for real-time tumor tracking in lung stereotactic body radiotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • 7 patients were implanted with lung-specific electromagnetic transponders (EMT).

          • We report no complications from implantation and no migration of the EMT.

          • 7 non-small cell lung cancer patients underwent SBRT using EMT real-time tracking.

          • SBRT was delivered in free-breathing (FB) or in deep inspiration breath-hold (DIBH).

          Abstract

          Background and purposes

          Motion management is crucial for optimal stereotactic body radiotherapy (SBRT) of moving targets. We aimed to describe our clinical experience with real-time tracking of lung-specific electromagnetic transponders (EMTs) for SBRT of early stage non-small cell lung cancer in free-breathing (FB) or deep inspiration breath-hold (DIBH).

          Material and methods

          Seven patients were implanted with EMTs. Simulation for SBRT was performed in FB and in DIBH. We prescribed 60 Gy in 3, 5 or 8 fractions to the tumor and delivered SBRT with volumetric modulated arcs and a 6 MV flattening filter free photon beam. Patients’ setup at the linac was performed using EMT positions and cone-beam CT (CBCT) verification. Four patients were treated in DIBH because of a dosimetric benefit. We analysed patient alignment and treatment delivery parameters using DIBH or FB and EMT real-time tracking.

          Results

          There were no complications from the EMT implantation. Visual inspection of CBCT before and/or after SBRT revealed good alignment of structures and EMTs. The median setup time was 9.8 min (range: 4.6–34.1 min) and the median session time was 14.7 min (range: 7.3–36.5 min). EMT positions in lungs remained stable during overall treatment and allowed real-time tracking both in FB and in DIBH SBRT. The treatment beam was gated when EMT centroid position exceeded tolerance thresholds ensuring correct delivery of radiation to the tumor.

          Conclusion

          Using EMTs for real-time tracking of tumor motion during lung SBRT proved to be safe, accurate and easy to integrate clinically for treatments in FB or DIBH.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy.

          In this work, three-dimensional (3D) motion of lung tumors during radiotherapy in real time was investigated. Understanding the behavior of tumor motion in lung tissue to model tumor movement is necessary for accurate (gated or breath-hold) radiotherapy or CT scanning. Twenty patients were included in this study. Before treatment, a 2-mm gold marker was implanted in or near the tumor. A real-time tumor tracking system using two fluoroscopy image processor units was installed in the treatment room. The 3D position of the implanted gold marker was determined by using real-time pattern recognition and a calibrated projection geometry. The linear accelerator was triggered to irradiate the tumor only when the gold marker was located within a certain volume. The system provided the coordinates of the gold marker during beam-on and beam-off time in all directions simultaneously, at a sample rate of 30 images per second. The recorded tumor motion was analyzed in terms of the amplitude and curvature of the tumor motion in three directions, the differences in breathing level during treatment, hysteresis (the difference between the inhalation and exhalation trajectory of the tumor), and the amplitude of tumor motion induced by cardiac motion. The average amplitude of the tumor motion was greatest (12 +/- 2 mm [SD]) in the cranial-caudal direction for tumors situated in the lower lobes and not attached to rigid structures such as the chest wall or vertebrae. For the lateral and anterior-posterior directions, tumor motion was small both for upper- and lower-lobe tumors (2 +/- 1 mm). The time-averaged tumor position was closer to the exhale position, because the tumor spent more time in the exhalation than in the inhalation phase. The tumor motion was modeled as a sinusoidal movement with varying asymmetry. The tumor position in the exhale phase was more stable than the tumor position in the inhale phase during individual treatment fields. However, in many patients, shifts in the exhale tumor position were observed intra- and interfractionally. These shifts are the result of patient relaxation, gravity (posterior direction), setup errors, and/or patient movement.The 3D trajectory of the tumor showed hysteresis for 10 of the 21 tumors, which ranged from 1 to 5 mm. The extent of hysteresis and the amplitude of the tumor motion remained fairly constant during the entire treatment. Changes in shape of the trajectory of the tumor were observed between subsequent treatment days for only one patient. Fourier analysis revealed that for 7 of the 21 tumors, a measurable motion in the range 1-4 mm was caused by the cardiac beat. These tumors were located near the heart or attached to the aortic arch. The motion due to the heartbeat was greatest in the lateral direction. Tumor motion due to hysteresis and heartbeat can lower treatment efficiency in real-time tumor tracking-gated treatments or lead to a geographic miss in conventional or active breathing controlled treatments. The real-time tumor tracking system measured the tumor position in all three directions simultaneously, at a sampling rate that enabled detection of tumor motion due to heartbeat as well as hysteresis. Tumor motion and hysteresis could be modeled with an asymmetric function with varying asymmetry. Tumor motion due to breathing was greatest in the cranial-caudal direction for lower-lobe unfixed tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy.

            To report the clinical experience with an electromagnetic treatment target positioning and continuous monitoring system in patients with localized prostate cancer receiving external beam radiotherapy. The Calypso System is a target positioning device that continuously monitors the location of three implanted electromagnetic transponders at a rate of 10 Hz. The system was used at five centers to position 41 patients over a full course of therapy. Electromagnetic positioning was compared to setup using skin marks and to stereoscopic X-ray localization of the transponders. Continuous monitoring was performed in 35 patients. The difference between skin mark vs. the Calypso System alignment was found to be >5 mm in vector length in more than 75% of fractions. Comparisons between the Calypso System and X-ray localization showed good agreement. Qualitatively, the continuous motion was unpredictable and varied from persistent drift to transient rapid movements. Displacements > or =3 and > or =5 mm for cumulative durations of at least 30 s were observed during 41% and 15% of sessions. In individual patients, the number of fractions with displacements > or =3 mm ranged from 3% to 87%; whereas the number of fractions with displacements > or =5 mm ranged from 0% to 56%. The Calypso System is a clinically efficient and objective localization method for positioning prostate patients undergoing radiotherapy. Initial treatment setup can be performed rapidly, accurately, and objectively before radiation delivery. The extent and frequency of prostate motion during radiotherapy delivery can be easily monitored and used for motion management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis.

              Electromagnetic navigation bronchoscopy (ENB) is an emerging endoscopic technique for the diagnosis of peripheral lung lesions. A thorough analysis of ENB's yield and safety is required for comparison to other sampling modalities.
                Bookmark

                Author and article information

                Contributors
                Journal
                Phys Imaging Radiat Oncol
                Phys Imaging Radiat Oncol
                Physics and Imaging in Radiation Oncology
                Elsevier
                2405-6316
                28 November 2019
                October 2019
                28 November 2019
                : 12
                : 30-37
                Affiliations
                [a ]Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland
                [b ]Department of Pneumology, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
                [c ]Radiation Oncology, Teknon Oncologic Institute, Carrer de Vilana 12, 08022 Barcelona, Spain
                Author notes
                [* ]Corresponding author at: Department of Radiation Oncology, Geneva University Hospital, 53 Av. de la Roseraie, 1205 Geneva, Switzerland. maud.jaccard@ 123456hcuge.ch
                [1]

                Equal contribution.

                Article
                S2405-6316(19)30052-1
                10.1016/j.phro.2019.11.002
                7807938
                33458292
                ab7f863e-8c76-485f-8f4b-ef5b2e690ccc
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 2 August 2019
                : 7 November 2019
                : 13 November 2019
                Categories
                Original Research Article

                lung sbrt,real-time tracking,electromagnetic transponder,intra-fraction motion,deep inspiration breath-hold

                Comments

                Comment on this article