8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A distributed temperature-index ice- and snowmelt model including potential direct solar radiation

      Journal of Glaciology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hourly melt and discharge of Storglaciären, a small glacier in Sweden, were computed for two melt seasons, applying temperature-index methods to a 30 m resolution grid for the melt component. The classical degree-day method yielded a good simulation of the seasonal patient of discharge, but the pronounced melt-induced daily discharge cycles were not captured. Modelled degree-day factors calculated for every hour and each gridcell from melt obtained from a distributed energy-balance model varied substantially, both diurnally and spatially. A new distributed temperature-index model is suggested, attempting to capture both the pronounced diurnal melt cycles and the spatial variations in melt due to the effects of surrounding topography. This is accomplished by including a radiation index in terms of potential clear-sky direct solar radiation, and thus, without the need for other data besides air temperature. This approach improved considerably the simulation of diurnal discharge fluctuations and yielded a more realistic spatial distribution of melt rates. The incorporation of measured global radiation to account for the reduction in direct solar radiation due to cloudiness did not lead to additional improvement in model performance.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling

          Ice ablation is related to air temperature by the positive degree-day factor. Variations of the positive degree-day factor in West Greenland are studied using an energy-balance model to simulate ablation under different conditions. Degree-day factors for simulated and measured ice ablation at Nordbogletscher and Qamanârssûp sermia agree well with values around 8 mm d −1 °C −1 . Degree-day factors for snow are less than half those for ice. Energy-balance modelling shows that degree-day factors vary with summer mean temperature, surface albedo and turbulence but there is only evidence of large positive degree-day factors at lower temperatures and with low albedo (0.3). The greatest effect of albedo variations (0.3–0.7) is at lower temperatures while variations in turbulence have greater effect at higher temperatures. Current models may underestimate runoff from the Greenland ice sheet by several tenths because they use a degree-day factor for melting ice that is too small for the colder parts of the ice sheet, i.e. the upper ablation area and the northerly margin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An Energy and Mass Model of Snow Cover Suitable for Operational Avalanche Forecasting

            A numerical model has been developed to simulate energy and mass evolution of snow cover at a given location, as a function of meteorological conditions: precipitation, air temperature, humidity, wind velocity, and incoming short-wave and long-wave radiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate at the Equilibrium Line of Glaciers

              The relationships between temperature, precipitation and radiation on glacier equilibrium lines are investigated, using 70 glaciers for which the mass balance and meteorological observations have been carried out for sufficiently long periods. It is found that the characteristic climate at glacier equilibrium lines can be described using the summer 3 months’ temperature in a free atmosphere, annual total precipitation, and the sum of global and long-wave net radiation. All of these are measured at or very near the equilibrium-line altitudes. Then, it is shown how the shift of the equilibriumline will occur as a result of a climatic change. Finally, the effect of the shift of the equilibrium line on the annualmean specific mass balance is analytically derived and compared with observations. The present results make it possible to identify the altitudes in climate models where glacierization should begin, and to evaluate the mass-balance changes as a result of possible future changes in the climate.
                Bookmark

                Author and article information

                Journal
                applab
                Journal of Glaciology
                J. Glaciol.
                Cambridge University Press (CUP)
                0022-1430
                1727-5652
                1999
                January 20 2017
                1999
                : 45
                : 149
                : 101-111
                Article
                10.3189/S0022143000003087
                abd23525-5738-4eb0-a90f-4d3484c31cda
                © 1999
                History

                Comments

                Comment on this article