19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased Insulin Sensitivity by High-Altitude Hypoxia in Mice with High-Fat Diet-Induced Obesity Is Associated with Activated AMPK Signaling and Subsequently Enhanced Mitochondrial Biogenesis in Skeletal Muscles

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: This study aimed to investigate whether and how high altitude-associated ambient hypoxia affects insulin sensitivity in mice fed a high-fat diet (HFD). Methods: Mice were randomly divided into a control group (with normal diet feeding and low-altitude housing), LA/HFD group (with HFD feeding and low-altitude housing), and HA/HFD group (with HFD feeding and high-altitude housing). Results: After 8 weeks, mice in the HA/HFD group showed improved insulin sensitivity-related indices compared with the LA/HFD group. In mice residing in a low-altitude region, HFD significantly impaired mitochondrial respiratory function and mitochondrial DNA content in skeletal muscles, which was partially reversed in mice in the HA/HFD group. In addition, the fatty acid oxidation-related enzyme gene CPT1 (carnitine palmitoyltransferase 1) and genes related to mitochondrial biogenesis such as peroxisome proliferator-activated receptor-γ coactivator-1α ( PGC-1α), nuclear respiratory factor 1 ( NRF1), and mitochondrial transcription factor A ( Tfam) were upregulated in the skeletal muscles of mice housed at high altitude, in comparison to in the LA/HFD group. Furthermore, AMPK (adenosine monophosphate-activated protein kinase) signaling was activated in the skeletal muscles, as evidenced by a higher expression of phosphorylated AMPK (p-AMPK) and protein kinase B (p-AKT) in the HA/HFD group than in the LA/HFD group. Conclusion: Our study suggests that high-altitude hypoxia improves insulin sensitivity in mice fed an HFD, which is associated with AMPK activation in the skeletal muscle and consequently enhanced mitochondrial biogenesis and fatty acid oxidation. This work provides a molecular explanation for why high altitude is associated with a reduced incidence of insulin resistance in the obese population.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AMPK: guardian of metabolism and mitochondrial homeostasis.

              Cells constantly adapt their metabolism to meet their energy needs and respond to nutrient availability. Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the serine/threonine kinase AMP-activated protein kinase (AMPK) complex. Under conditions of low energy, AMPK phosphorylates specific enzymes and growth control nodes to increase ATP generation and decrease ATP consumption. In the past decade, the discovery of numerous new AMPK substrates has led to a more complete understanding of the minimal number of steps required to reprogramme cellular metabolism from anabolism to catabolism. This energy switch controls cell growth and several other cellular processes, including lipid and glucose metabolism and autophagy. Recent studies have revealed that one ancestral function of AMPK is to promote mitochondrial health, and multiple newly discovered targets of AMPK are involved in various aspects of mitochondrial homeostasis, including mitophagy. This Review discusses how AMPK functions as a central mediator of the cellular response to energetic stress and mitochondrial insults and coordinates multiple features of autophagy and mitochondrial biology.
                Bookmark

                Author and article information

                Journal
                OFA
                OFA
                Obes Facts
                10.1159/issn.1662-4025
                Obesity Facts
                S. Karger AG
                1662-4025
                1662-4033
                2020
                October 2020
                23 September 2020
                : 13
                : 5
                : 455-472
                Affiliations
                [_a] aResearch Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
                [_b] bKey Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China
                [_c] cDepartment of Endocrinology, Qinghai Provincial People’s Hospital, Xining, China
                Author notes
                *Ri-Li Ge, Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810001 (PR China), geriligao@hotmail.com
                Article
                508112 Obes Facts 2020;13:455–472
                10.1159/000508112
                32966981
                ac1b7d86-3da4-4e89-8d78-dee3c9fec8d2
                © 2020 The Author(s) Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 22 August 2019
                : 20 April 2020
                Page count
                Figures: 4, Tables: 1, Pages: 18
                Categories
                Research Article

                Nutrition & Dietetics,Health & Social care,Public health
                Insulin sensitivity,High altitude,AMPK signaling,Mitochondrial biogenesis,Skeletal muscle,Ambient hypoxia

                Comments

                Comment on this article