2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contrasting microbial community responses to salinization and straw amendment in a semiarid bare soil and its wheat rhizosphere

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soil salinization is a major constraint of agriculture in semiarid ecosystems. In this study soil microcosms were applied to evaluate the impact of a lower- and higher-level salinization treatment of a pristine scrubland soil on the abundance of Bacteria, Archaea, and Fungi, and on prokaryotic diversity in bare soil and the rhizosphere of wheat assessed by qPCR and high-throughput sequencing of 16S rRNA gene amplicons. Furthermore, the impact of soil straw amendment as a salt-stress alleviation strategy was studied. While the low-level salinity stimulated plant growth, the seedlings did not survive under the higher-level salinity unless the soil was amended with straw. Without the straw amendment, salinization had only minor effects on the microbial community in bare soil. On the other hand, it decreased prokaryotic diversity in the rhizosphere of wheat, but the straw amendment was effective in mitigating this effect. The straw however, was not a significant nutrient source for the rhizosphere microbiota but more likely acted indirectly by ameliorating the salinity stress on the plant. Members of Proteobacteria, Actinobacteria, and Firmicutes were abundant among the bacteria that reacted to soil salinization and the straw amendment but showed inconsistent responses indicating the large physiological diversity within these phyla.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.

          Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

            Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Salinity tolerance of crops - what is the cost?

              Soil salinity reduces crop yield. The extent and severity of salt-affected agricultural land is predicted to worsen as a result of inadequate drainage of irrigated land, rising water tables and global warming. The growth and yield of most plant species are adversely affected by soil salinity, but varied adaptations can allow some crop cultivars to continue to grow and produce a harvestable yield under moderate soil salinity. Significant costs are associated with saline soils: the economic costs to the farming community and the energy costs of plant adaptations. We briefly consider mechanisms of adaptation and highlight recent research examples through a lens of their applicability to improving the energy efficiency of crops under saline field conditions.
                Bookmark

                Author and article information

                Contributors
                christoph.tebbe@thuenen.de
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 July 2019
                5 July 2019
                2019
                : 9
                : 9795
                Affiliations
                [1 ]Thünen Institute of Biodiversity, Braunschweig, Germany
                [2 ]ISNI 0000 0001 0059 9146, GRID grid.458485.0, Institute of Soil Science, Chinese Academy of Science, ; Nanjing, Jiangsu China
                [3 ]ISNI 0000 0004 0428 7635, GRID grid.418270.8, Centro de Investigaciónes Biologicas del Noroeste (CIBNOR), La Paz, ; Baja California Sur, Mexico
                [4 ]Julius Kühn Institute of Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
                Author information
                http://orcid.org/0000-0003-4861-0214
                Article
                46070
                10.1038/s41598-019-46070-6
                6611862
                31278291
                ae06c5af-6df5-4936-a700-4a4644110d2a
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 January 2019
                : 17 June 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003152, Consejo Estatal de Ciencia, Tecnología e Innovación (State Council for Science, Technology and Innovation);
                Award ID: B330/252/11
                Award ID: B330/252/11
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100002347, Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research);
                Award ID: 01DN12067
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                soil microbiology,agroecology
                Uncategorized
                soil microbiology, agroecology

                Comments

                Comment on this article