7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of selective attention in preschool-age children from lower socioeconomic status backgrounds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • We assessed selective attention in 4-year-olds from lower & higher SES backgrounds.

          • Development of selective attention over one year was evaluated in the LSES group.

          • At age four, only the HSES group showed enhanced neural responses with attention.

          • The LSES group developed an effect of attention on neural processing by age five.

          • The LSES group showed persistent attenuation of distractor suppression at age five.

          Abstract

          Although differences in selective attention skills have been identified in children from lower compared to higher socioeconomic status (SES) backgrounds, little is known about these differences in early childhood, a time of rapid attention development. The current study evaluated the development of neural systems for selective attention in children from lower SES backgrounds. Event-related potentials (ERPs) were acquired from 33 children from lower SES and 14 children from higher SES backgrounds during a dichotic listening task. The lower SES group was followed longitudinally for one year. At age four, the higher SES group exhibited a significant attention effect (larger ERP response to attended compared to unattended condition), an effect not observed in the lower SES group. At age five, the lower SES group exhibited a significant attention effect comparable in overall magnitude to that observed in the 4-year-old higher SES group, but with poorer distractor suppression (larger response to the unattended condition). Together, these findings suggest both a maturational delay and divergent developmental pattern in neural mechanisms for selective attention in young children from lower compared to higher SES backgrounds. Furthermore, these findings highlight the importance of studying neurodevelopment within narrow age ranges and in children from diverse backgrounds.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease.

          The brain is the key organ of stress reactivity, coping, and recovery processes. Within the brain, a distributed neural circuitry determines what is threatening and thus stressful to the individual. Instrumental brain systems of this circuitry include the hippocampus, amygdala, and areas of the prefrontal cortex. Together, these systems regulate physiological and behavioral stress processes, which can be adaptive in the short-term and maladaptive in the long-term. Importantly, such stress processes arise from bidirectional patterns of communication between the brain and the autonomic, cardiovascular, and immune systems via neural and endocrine mechanisms underpinning cognition, experience, and behavior. In one respect, these bidirectional stress mechanisms are protective in that they promote short-term adaptation (allostasis). In another respect, however, these stress mechanisms can lead to a long-term dysregulation of allostasis in that they promote maladaptive wear-and-tear on the body and brain under chronically stressful conditions (allostatic load), compromising stress resiliency and health. This review focuses specifically on the links between stress-related processes embedded within the social environment and embodied within the brain, which is viewed as the central mediator and target of allostasis and allostatic load.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Socioeconomic status and the developing brain.

            Childhood socioeconomic status (SES) is associated with cognitive achievement throughout life. How does SES relate to brain development, and what are the mechanisms by which SES might exert its influence? We review studies in which behavioral, electrophysiological and neuroimaging methods have been used to characterize SES disparities in neurocognitive function. These studies indicate that SES is an important predictor of neurocognitive performance, particularly of language and executive function, and that SES differences are found in neural processing even when performance levels are equal. Implications for basic cognitive neuroscience and for understanding and ameliorating the problems related to childhood poverty are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regional differences in synaptogenesis in human cerebral cortex.

              The formation of synaptic contacts in human cerebral cortex was compared in two cortical regions: auditory cortex (Heschl's gyrus) and prefrontal cortex (middle frontal gyrus). Synapse formation in both cortical regions begins in the fetus, before conceptual age 27 weeks. Synaptic density increases more rapidly in auditory cortex, where the maximum is reached near postnatal age 3 months. Maximum synaptic density in middle frontal gyrus is not reached until after age 15 months. Synaptogenesis occurs concurrently with dendritic and axonal growth and with myelination of the subcortical white matter. A phase of net synapse elimination occurs late in childhood, earlier in auditory cortex, where it has ended by age 12 years, than in prefrontal cortex, where it extends to midadolescence. Synaptogenesis and synapse elimination in humans appear to be heterochronous in different cortical regions and, in that respect, appears to differ from the rhesus monkey, where they are concurrent. In other respects, including overproduction of synaptic contacts in infancy, persistence of high levels of synaptic density to late childhood or adolescence, the absolute values of maximum and adult synaptic density, and layer specific differences, findings in the human resemble those in rhesus monkeys.
                Bookmark

                Author and article information

                Contributors
                Journal
                Dev Cogn Neurosci
                Dev Cogn Neurosci
                Developmental Cognitive Neuroscience
                Elsevier
                1878-9293
                1878-9307
                04 July 2017
                August 2017
                04 July 2017
                : 26
                : 101-111
                Affiliations
                [a ]Michigan State University, Department of Communicative Sciences and Disorders, 1026 Red Cedar Rd., East Lansing, MI 48824, United States
                [b ]Willamette University, Department of Psychology, 900 State Street, Salem, OR 97301, United States
                [c ]University of Oregon, Department of Psychology, 1227 University of Oregon, Eugene, OR 97403, United States
                [d ]University of North Carolina at Greensboro, Department of Human Development and Family Studies, Greensboro, NC, 27412, United States
                Author notes
                [* ]Corresponding author. ahw@ 123456msu.edu
                Article
                S1878-9293(17)30005-1
                10.1016/j.dcn.2017.06.006
                5703215
                28735165
                ae2e5c8b-9007-4de0-bbfd-afe22096b8f1
                © 2017 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 January 2017
                : 19 May 2017
                : 28 June 2017
                Categories
                Original Research

                Neurosciences
                selective attention,development,erps,ses,children
                Neurosciences
                selective attention, development, erps, ses, children

                Comments

                Comment on this article