19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Downregulation of MCL-1 and upregulation of PUMA using mTOR inhibitors enhance antitumor efficacy of BH3 mimetics in triple-negative breast cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Triple-negative breast cancer (TNBC) shows a higher malignant and poorer clinical outcome compared with other breast cancer subtypes. Albeit that chemotherapy is the first choice for TNBC treatment, rapid emergence of chemoresistance and variability of chemotherapeutic responses in TNBC patients call for novel therapeutic strategies. Here, we reported evidences highlighting that combination of BH3 mimetics and mTOR inhibitors could be a promising therapeutic strategy to improve TNBC treatment. Our results showed that combination of the BH3 mimetic ABT263 and typical mTOR inhibitors, BEZ235 or AZD8055, leads to efficient apoptosis in vitro. Tumor regression was significantly improved by combination therapy compared with either drug alone in the xenograft model. Further mechanistic investigations revealed that mTOR inhibitors induced the suppression of MCL-1; concomitantly, the expression level of PUMA was significantly upregulated in a FOXO3a-dependent manner. The specific changes of MCL-1 and PUMA facilitated the release of the apoptotic regulators, such as BIM, BAX, and BAK, to induce the activation of mitochondrial apoptotic pathway, thereby sensitizing the ABT263 activity in TNBC. Therefore, our findings provided evidences that mTOR inhibitors can enhance antitumor efficacy of BH3 mimetics via downregulating MCL-1 and upregulating PUMA in TNBC; it could be a promising therapeutic strategy to treat TNBC.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study.

          Olaparib (AZD2281) is a small-molecule, potent oral poly(ADP-ribose) polymerase (PARP) inhibitor. We aimed to assess the safety and tolerability of this drug in patients without BRCA1 or BRCA2 mutations with advanced triple-negative breast cancer or high-grade serous and/or undifferentiated ovarian cancer. In this phase 2, multicentre, open-label, non-randomised study, women with advanced high-grade serous and/or undifferentiated ovarian carcinoma or triple-negative breast cancer were enrolled and received olaparib 400 mg twice a day. Patients were stratified according to whether they had a BRCA1 or BRCA2 mutation or not. The primary endpoint was objective response rate by Response Evaluation Criteria In Solid Tumors (RECIST). All patients who received treatment were included in the analysis of toxic effects, and patients who had measurable lesions at baseline were included in the primary efficacy analysis. This trial is registered at ClinicalTrials.gov, number NCT00679783. 91 patients were enrolled (65 with ovarian cancer and 26 breast cancer) and 90 were treated between July 8, 2008, and Sept 24, 2009. In the ovarian cancer cohorts, 64 patients received treatment. 63 patients had target lesions and therefore were evaluable for objective response as per RECIST. In these patients, confirmed objective responses were seen in seven (41%; 95% CI 22-64) of 17 patients with BRCA1 or BRCA2 mutations and 11 (24%; 14-38) of 46 without mutations. No confirmed objective responses were reported in patients with breast cancer. The most common adverse events were fatigue (45 [70%] of patients with ovarian cancer, 13 [50%] of patients with breast cancer), nausea (42 [66%] and 16 [62%]), vomiting (25 [39%] and nine [35%]), and decreased appetite (23 [36%] and seven [27%]). Our study suggests that olaparib is a promising treatment for women with ovarian cancer and further assessment of the drug in clinical trials is needed. AstraZeneca. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models.

            The pathways underlying basal-like breast cancer are poorly understood, and as yet, there is no approved targeted therapy for this disease. We investigated the role of mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitors as targeted therapies for basal-like breast cancer. We used pharmacogenomic analysis of a large panel of breast cancer cell lines with detailed accompanying molecular information to identify molecular predictors of response to a potent and selective inhibitor of MEK and also to define molecular mechanisms underlying combined MEK and PI3K targeting in basal-like breast cancer. Hypotheses were confirmed by testing in multiple tumor xenograft models. We found that basal-like breast cancer models have an activated RAS-like transcriptional program and show greater sensitivity to a selective inhibitor of MEK compared with models representative of other breast cancer subtypes. We also showed that loss of PTEN is a negative predictor of response to MEK inhibition, that treatment with a selective MEK inhibitor caused up-regulation of PI3K pathway signaling, and that dual blockade of both PI3K and MEK/extracellular signal-regulated kinase signaling synergized to potently impair the growth of basal-like breast cancer models in vitro and in vivo. Our studies suggest that single-agent MEK inhibition is a promising therapeutic modality for basal-like breast cancers with intact PTEN, and also provide a basis for rational combination of MEK and PI3K inhibitors in basal-like cancers with both intact and deleted PTEN.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E.

              We genetically dissect the contribution of the most prominent downstream translational components of mTOR signaling toward Akt-driven lymphomagenesis. While phosphorylation of rpS6 is dispensable for cancer formation, 4EBP-eIF4E exerts significant control over cap-dependent translation, cell growth, cancer initiation, and progression. This effect is mediated at least in part through 4EBP-dependent control of Mcl-1 expression, a key antiapoptotic protein. By using an active site inhibitor of mTOR, PP242, we show a marked therapeutic response in rapamycin-resistant tumors. The therapeutic benefit of PP242 is mediated through inhibition of mTORC1-dependent 4EBP-eIF4E hyperactivation. Thus, the 4EBP-eIF4E axis downstream of mTOR is a druggable mediator of translational control and Akt-mediated tumorigenesis that has important implications for the treatment of human cancers. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                liulei@scnu.edu.cn
                xingda@scnu.edu.cn
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                26 January 2018
                26 January 2018
                February 2018
                : 9
                : 2
                : 137
                Affiliations
                [1 ]ISNI 0000 0004 0368 7397, GRID grid.263785.d, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, ; 510631 Guangzhou, China
                [2 ]ISNI 0000 0004 0368 7397, GRID grid.263785.d, Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University, ; 510631 Guangzhou, China
                Author information
                http://orcid.org/0000-0001-9554-9634
                Article
                169
                10.1038/s41419-017-0169-2
                5833778
                29374168
                b03142a4-b635-47f0-bdc4-be45c5a1d73b
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 June 2017
                : 15 November 2017
                : 20 November 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Cell biology
                Cell biology

                Comments

                Comment on this article