+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Exploring the contributions of vegetation and dune size to early dune building using unmanned aerial vehicle (UAV)-imaging

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Dune development along highly dynamic land-sea boundaries is the results of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of dune development under a changing climate, but has proven difficult due to scarcity of spatially continuous monitoring data. <br><br> This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural dune field of 8 hectares, along the coast of the island Texel, the Netherlands, for one year using an Unmanned Aerial Vehicle (UAV) with camera. After constructing a Digital Surface Model and orthomosaic we derived for each dune 1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), 2) dune size (dune volume, area, and maximum height), 3) degree of shelter (proximity to other dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. <br><br> We found that a positive change in dune volume (dune growth) was linearly related to dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume than sheltered dunes over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by <i>Ammophila arenaria</i>, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by <i>Elytrigia juncea</i>, a grass species with lower vegetation density. The effect of species was irrespective of dune size or distance to the sea. <br><br> Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation. In our study area the growth of exposed dunes was likely restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply. Our results can be used to improve models predicting coastal dune development.

          Related collections

          Author and article information

          Biogeosciences Discussions
          Biogeosciences Discuss.
          Copernicus GmbH
          May 17 2017
          : 1-44
          © 2017


          Comment on this article