28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ohm's law survives to the atomic scale.

      Science (New York, N.Y.)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As silicon electronics approaches the atomic scale, interconnects and circuitry become comparable in size to the active device components. Maintaining low electrical resistivity at this scale is challenging because of the presence of confining surfaces and interfaces. We report on the fabrication of wires in silicon--only one atom tall and four atoms wide--with exceptionally low resistivity (~0.3 milliohm-centimeters) and the current-carrying capabilities of copper. By embedding phosphorus atoms within a silicon crystal with an average spacing of less than 1 nanometer, we achieved a diameter-independent resistivity, which demonstrates ohmic scaling to the atomic limit. Atomistic tight-binding calculations confirm the metallicity of these atomic-scale wires, which pave the way for single-atom device architectures for both classical and quantum information processing.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Random-Matrix Theory of Quantum Transport

          This is a comprehensive review of the random-matrix approach to the theory of phase-coherent conduction in mesocopic systems. The theory is applied to a variety of physical phenomena in quantum dots and disordered wires, including universal conductance fluctuations, weak localization, Coulomb blockade, sub-Poissonian shot noise, reflectionless tunneling into a superconductor, and giant conductance oscillations in a Josephson junction.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Universal Conductance Fluctuations in Metals

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Single-shot readout of an electron spin in silicon

              , , (2010)
              The size of silicon transistors used in microelectronic devices is shrinking to the level where quantum effects become important. While this presents a significant challenge for the further scaling of microprocessors, it provides the potential for radical innovations in the form of spin-based quantum computers and spintronic devices. An electron spin in Si can represent a well-isolated quantum bit with long coherence times because of the weak spin-orbit coupling and the possibility to eliminate nuclear spins from the bulk crystal. However, the control of single electrons in Si has proved challenging, and has so far hindered the observation and manipulation of a single spin. Here we report the first demonstration of single-shot, time-resolved readout of an electron spin in Si. This has been performed in a device consisting of implanted phosphorus donors coupled to a metal-oxide-semiconductor single-electron transistor - compatible with current microelectronic technology. We observed a spin lifetime approaching 1 second at magnetic fields below 2 T, and achieved spin readout fidelity better than 90%. High-fidelity single-shot spin readout in Si opens the path to the development of a new generation of quantum computing and spintronic devices, built using the most important material in the semiconductor industry.
                Bookmark

                Author and article information

                Journal
                22223802
                10.1126/science.1214319

                Comments

                Comment on this article