Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A photocontrolled beta-hairpin peptide.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Beta-hairpins constitute the smallest beta-type structures in peptides and proteins. The development of highly stable, yet monomeric beta-hairpins based on the tryptophan zipper motif was therefore a remarkable success [A. G. Cochran, N. J. Skelton, M. A. Starovasnik, Proc. Natl. Acad. Sci USA 2001, 98, 5578-5583]. We have been able to design, synthesize and characterize a hairpin based on this motif which incorporates an azobenzene-based photoswitch, that allows for time-resolved folding studies of beta-structures with unprecedented time resolution. At room temperature the trans-azo isomer exhibits a mostly disordered structure; however, light-induced isomerization to the cis-azo form leads to a predominantly extended and parallel conformation of the two peptide parts, which are linked by the novel photoswitch, [3-(3-aminomethyl)phenylazo]phenylacetic acid (AMPP). While in the original sequence the dipeptide Asn-Gly forms a type I' beta-turn which connects the two strands of the hairpin, this role is adopted by the AMPP chromophore in our photoresponsive beta-hairpin that can apparently act as a beta I'-turn mimetic. The beta-hairpin structure was determined and confirmed by NMR spectroscopy, but the folding process can be monitored by pronounced changes in the CD, IR and fluorescence spectra. Finally, incorporation of the structurally and functionally important beta-hairpin motif into proteins by chemical ligation might allow for the photocontrol of protein structures and/or functions.

          Related collections

          Author and article information

          Journal
          Chemistry
          Chemistry (Weinheim an der Bergstrasse, Germany)
          Wiley-Blackwell
          0947-6539
          0947-6539
          Jan 23 2006
          : 12
          : 4
          Affiliations
          [1 ] Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152 Martinsried, Germany.
          Article
          10.1002/chem.200500986
          16294349
          b4c4c2ed-9fba-4ea8-888d-a6296afb89fc
          History

          Comments

          Comment on this article