16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Major histocompatibility complex (MHC) molecules are expressed on the cell surface, where they present peptides to T cells, which gives them a key role in the development of T-cell immune responses. MHC molecules come in two main variants: MHC Class I (MHC-I) and MHC Class II (MHC-II). MHC-I predominantly present peptides derived from intracellular proteins, whereas MHC-II predominantly presents peptides from extracellular proteins. In both cases, the binding between MHC and antigenic peptides is the most selective step in the antigen presentation pathway. Therefore, the prediction of peptide binding to MHC is a powerful utility to predict the possible specificity of a T-cell immune response. Commonly MHC binding prediction tools are trained on binding affinity or mass spectrometry-eluted ligands. Recent studies have however demonstrated how the integration of both data types can boost predictive performances. Inspired by this, we here present NetMHCpan-4.1 and NetMHCIIpan-4.0, two web servers created to predict binding between peptides and MHC-I and MHC-II, respectively. Both methods exploit tailored machine learning strategies to integrate different training data types, resulting in state-of-the-art performance and outperforming their competitors. The servers are available at http://www.cbs.dtu.dk/services/NetMHCpan-4.1/ and http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

          Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction.

            Identification of human leukocyte antigen (HLA)-bound peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS) is poised to provide a deep understanding of rules underlying antigen presentation. However, a key obstacle is the ambiguity that arises from the co-expression of multiple HLA alleles. Here, we have implemented a scalable mono-allelic strategy for profiling the HLA peptidome. By using cell lines expressing a single HLA allele, optimizing immunopurifications, and developing an application-specific spectral search algorithm, we identified thousands of peptides bound to 16 different HLA class I alleles. These data enabled the discovery of subdominant binding motifs and an integrative analysis quantifying the contribution of factors critical to epitope presentation, such as protein cleavage and gene expression. We trained neural-network prediction algorithms with our large dataset (>24,000 peptides) and outperformed algorithms trained on datasets of peptides with measured affinities. We thus demonstrate a strategy for systematically learning the rules of endogenous antigen presentation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets

              Background Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells. Results Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining information across both multiple MHC molecules and peptide lengths. This pan-allele/pan-length algorithm significantly outperforms state-of-the-art methods, and captures differences in the length profile of binders to different MHC molecules leading to increased accuracy for ligand identification. Using this model, we demonstrate that percentile ranks in contrast to affinity-based thresholds are optimal for ligand identification due to uniform sampling of the MHC space. Conclusions We have developed a neural network-based machine-learning algorithm leveraging information across multiple receptor specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.cbs.dtu.dk/services/NetMHCpan-3.0. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0288-x) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                02 July 2020
                14 May 2020
                14 May 2020
                : 48
                : W1
                : W449-W454
                Affiliations
                Department of Bio and Health Informatics, Technical University of Denmark , Kgs. Lyngby, DK 28002, Denmark
                Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín , Buenos Aires, BA 16503, Argentina
                La Jolla Institute for Immunology , La Jolla, CA 92037, USA
                La Jolla Institute for Immunology , La Jolla, CA 92037, USA
                Department of Medicine, University of California , San Diego, CA 92093, USA
                Department of Bio and Health Informatics, Technical University of Denmark , Kgs. Lyngby, DK 28002, Denmark
                Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín , Buenos Aires, BA 16503, Argentina
                Author notes
                To whom correspondence should be addressed. Tel: +45 4525 2425; Fax: +45 4593 1585; Email: morni@ 123456dtu.dk

                The authors wish it to be known that the first two authors should be regarded as joint First Authors.

                Author information
                http://orcid.org/0000-0001-8735-2719
                http://orcid.org/0000-0001-7885-4311
                Article
                gkaa379
                10.1093/nar/gkaa379
                7319546
                32406916
                b6d07011-503b-4839-b5d1-a685c4282598
                © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 29 April 2020
                : 17 April 2020
                : 13 March 2020
                Page count
                Pages: 6
                Funding
                Funded by: National Institutes of Health, DOI 10.13039/100000002;
                Award ID: 75N93019C00001
                Funded by: EIT Health, DOI 10.13039/100014419;
                Award ID: 19638
                Categories
                AcademicSubjects/SCI00010
                Web Server Issue

                Genetics
                Genetics

                Comments

                Comment on this article