3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gut microbiota in liver disease: too much is harmful, nothing at all is not helpful either

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The intestinal microbiome plays a major role in the pathogenesis of liver disease, with a hallmark event being dysbiosis, or an imbalance of pathobionts and beneficial bacteria with the associated deleterious effects on their host. Reducing the number of intestinal bacteria with antibiotic treatment is generally advantageous in experimental liver diseases. Complete absence of intestinal microbiota as in germ-free rodents can be protective in autoimmune hepatitis and hepatic tumors induced by chemicals, or it can exacerbate disease as in acute toxic liver injury and liver fibrosis/cirrhosis. In alcoholic liver disease, nonalcoholic fatty liver disease, and autoimmune cholangiopathies, germ-free status can be associated with worsened or improved hepatic phenotype depending on the experimental model and type of rodent. Some of the unexpected outcomes can be explained by the limitations of rodents raised in a germ-free environment including a deficient immune system and an altered metabolism of lipids, cholesterol, xenobiotics/toxins, and bile acids. Given these limitations and to advance understanding of the interactions between host and intestinal microbiota, simplified model systems such as humanized gnotobiotic mice, or gnotobiotic mice monoassociated with a single bacterial strain or colonized with a defined set of microbes, are unique and useful models for investigation of liver disease in a complex ecosystem.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling.

          Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes.

            Peroxisome proliferator-activated receptor alpha (PPARalpha) plays a key role in the transcriptional control of genes encoding mitochondrial fatty acid beta-oxidation (FAO) enzymes. In this study we sought to determine whether the recently identified PPAR gamma coactivator 1 (PGC-1) is capable of coactivating PPARalpha in the transcriptional control of genes encoding FAO enzymes. Mammalian cell cotransfection experiments demonstrated that PGC-1 enhanced PPARalpha-mediated transcriptional activation of reporter plasmids containing PPARalpha target elements. PGC-1 also enhanced the transactivation activity of a PPARalpha-Gal4 DNA binding domain fusion protein. Retroviral vector-mediated expression studies performed in 3T3-L1 cells demonstrated that PPARalpha and PGC-1 cooperatively induced the expression of PPARalpha target genes and increased cellular palmitate oxidation rates. Glutathione S-transferase "pulldown" studies revealed that in contrast to the previously reported ligand-independent interaction with PPARgamma, PGC-1 binds PPARalpha in a ligand-influenced manner. Protein-protein interaction studies and mammalian cell hybrid experiments demonstrated that the PGC-1-PPARalpha interaction involves an LXXLL domain in PGC-1 and the PPARalpha AF2 region, consistent with the observed ligand influence. Last, the PGC-1 transactivation domain was mapped to within the NH(2)-terminal 120 amino acids of the PGC-1 molecule, a region distinct from the PPARalpha interacting domains. These results identify PGC-1 as a coactivator of PPARalpha in the transcriptional control of mitochondrial FAO capacity, define separable PPARalpha interaction and transactivation domains within the PGC-1 molecule, and demonstrate that certain features of the PPARalpha-PGC-1 interaction are distinct from that of PPARgamma-PGC-1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease.

              The histopathology of nonalcoholic fatty liver disease (NAFLD) is similar to that of alcoholic liver disease. Colonic bacteria are a source of many metabolic products, including ethanol and other volatile organic compounds (VOC) that may have toxic effects on the human host after intestinal absorption and delivery to the liver via the portal vein. Recent data suggest that the composition of the gut microbiota in obese human beings is different from that of healthy-weight individuals. The aim of this study was to compare the colonic microbiome and VOC metabolome of obese NAFLD patients (n = 30) with healthy controls (n = 30). Multitag pyrosequencing was used to characterize the fecal microbiota. Fecal VOC profiles were measured by gas chromatography-mass spectrometry. There were statistically significant differences in liver biochemistry and metabolic parameters in NAFLD. Deep sequencing of the fecal microbiome revealed over-representation of Lactobacillus species and selected members of phylum Firmicutes (Lachnospiraceae; genera, Dorea, Robinsoniella, and Roseburia) in NAFLD patients, which was statistically significant. One member of phylum Firmicutes was under-represented significantly in the fecal microbiome of NAFLD patients (Ruminococcaceae; genus, Oscillibacter). Fecal VOC profiles of the 2 patient groups were different, with a significant increase in fecal ester compounds observed in NAFLD patients. A significant increase in fecal ester VOC is associated with compositional shifts in the microbiome of obese NAFLD patients. These novel bacterial metabolomic and metagenomic factors are implicated in the etiology and complications of obesity. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Gastrointestinal and Liver Physiology
                American Journal of Physiology-Gastrointestinal and Liver Physiology
                American Physiological Society
                0193-1857
                1522-1547
                May 01 2019
                May 01 2019
                : 316
                : 5
                : G563-G573
                Affiliations
                [1 ]Department of Pediatrics, University of California, San Diego, La Jolla, California
                [2 ]Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
                [3 ]Department of Medicine, University of California, San Diego, La Jolla, California
                [4 ]Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, California
                Article
                10.1152/ajpgi.00370.2018
                6580239
                30767680
                b7520c2c-e876-4a0d-b53a-38375dcda23a
                © 2019
                History

                Comments

                Comment on this article