16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The copper ion content in the body maintains homeostasis, and when dysregulated, it can produce cytotoxicity and induce cell death through a variety of pathways. Cuproptosis refers to copper ions combining directly with acylated molecules, leading to the accumulation of oligomerization of lipoylated protein and subsequent downregulation of iron-sulfur cluster proteins; this induces proteotoxic stress and cell death. This study on the relationship between cuproptosis-related lncRNAs (CRLns) and the prognosis of primary hepatic carcinoma (PHC) has important clinical guiding significance for the diagnosis and treatment of PHC. Prognosis-related CRLRs were identified via rank-sum tests, correlational analyses, and univariate Cox regression, and a CRLR risk-scoring model (CRLRSM) was constructed using LASSO Cox regression. Patients were divided into high-risk and low-risk groups based on the median CRLRSM scores. Variance analysis for cuproptosis-related genes, gene set enrichment analysis, and correlational analysis for risk and immunity were performed using boxplots. Quantitative polymerase chain reactions were used to verify the CRLR levels in PHC cell lines. The study results showed that patients in the CRLRSM high-risk group had worse survival rates than those in the low-risk group. The PHC stage and risk score were independent prognostic factors for hepatocellular carcinoma. There were 7 CRLRs (MIR210HG, AC099850.3, AL031985.3, AC012073.1, MKLN1-AS, KDM4A-AS1, and PLBD1-AS1) associated with PHC prognosis, primarily through cellular metabolism, growth, proliferation, apoptosis, and immunity. In conclusion, the overexpression of 7 CRLRs in patients with PHC indicates a poor prognosis.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Cancer statistics, 2022

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes. Incidence data (through 2018) were collected by the Surveillance, Epidemiology, and End Results program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2019) were collected by the National Center for Health Statistics. In 2022, 1,918,030 new cancer cases and 609,360 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer, the leading cause of cancer death. Incidence during 2014 through 2018 continued a slow increase for female breast cancer (by 0.5% annually) and remained stable for prostate cancer, despite a 4% to 6% annual increase for advanced disease since 2011. Consequently, the proportion of prostate cancer diagnosed at a distant stage increased from 3.9% to 8.2% over the past decade. In contrast, lung cancer incidence continued to decline steeply for advanced disease while rates for localized-stage increased suddenly by 4.5% annually, contributing to gains both in the proportion of localized-stage diagnoses (from 17% in 2004 to 28% in 2018) and 3-year relative survival (from 21% to 31%). Mortality patterns reflect incidence trends, with declines accelerating for lung cancer, slowing for breast cancer, and stabilizing for prostate cancer. In summary, progress has stagnated for breast and prostate cancers but strengthened for lung cancer, coinciding with changes in medical practice related to cancer screening and/or treatment. More targeted cancer control interventions and investment in improved early detection and treatment would facilitate reductions in cancer mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long Noncoding RNA and Cancer: A New Paradigm.

            In addition to mutations or aberrant expression in the protein-coding genes, mutations and misregulation of noncoding RNAs, in particular long noncoding RNAs (lncRNA), appear to play major roles in cancer. Genome-wide association studies of tumor samples have identified a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit tumor-suppressive and -promoting (oncogenic) functions. Because of their genome-wide expression patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have reviewed the emerging functions and association of lncRNAs in different types of cancer and discussed their potential implications in cancer diagnosis and therapy. Cancer Res; 77(15); 3965-81. ©2017 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Copper induces cell death by targeting lipoylated TCA cycle proteins

              Copper is an essential cofactor for all organisms, and yet it becomes toxic if concentrations exceed a threshold maintained by evolutionarily conserved homeostatic mechanisms. How excess copper induces cell death, however, is unknown. Here, we show in human cells that copper-dependent, regulated cell death is distinct from known death mechanisms and is dependent on mitochondrial respiration. We show that copper-dependent death occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle. This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. These findings may explain the need for ancient copper homeostatic mechanisms. Cell death is an essential, finely tuned process that is critical for the removal of damaged and superfluous cells. Multiple forms of programmed and nonprogrammed cell death have been identified, including apoptosis, ferroptosis, and necroptosis. Tsvetkov et al . investigated whether abnormal copper ion elevations may sensitize cells toward a previously unidentified death pathway (see the Perspective by Kahlson and Dixon). By performing CRISPR/Cas9 screens, several genes were identified that could protect against copper-induced cell killing. Using genetically modified cells and a mouse model of a copper overload disorder, the researchers report that excess copper promotes the aggregation of lipoylated proteins and links mitochondrial metabolism to copper-dependent death. —PNK Lipoylation determines sensitivity to copper-induced cell death.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2022
                15 September 2022
                15 September 2022
                : 2022
                : 2075638
                Affiliations
                Department of Hematology and Oncology, The First People's Hospital of Guiyang, No. 97, Boai Road, Nanming, Guiyang, Guizhou 550002, China
                Author notes

                Academic Editor: Xueliang Wu

                Author information
                https://orcid.org/0000-0002-7166-2381
                Article
                10.1155/2022/2075638
                9499762
                36159561
                b7eac930-91c4-423d-bcf1-b5d3f2d21d95
                Copyright © 2022 Lan Luo et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 August 2022
                : 20 August 2022
                : 25 August 2022
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article