26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Chk1

      review-article
      1 , 1 , 2 , 1 ,
      Cell Division
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chk1 is a serine/threonine protein kinase that is the effector of the G2 DNA damage checkpoint. Chk1 homologs have a highly conserved N-terminal kinase domain, and a less conserved C-terminal regulatory domain of ~200 residues. In response to a variety of genomic lesions, a number of proteins collaborate to activate Chk1, which in turn ensures that the mitotic cyclin-dependent kinase Cdc2 remains in an inactive state until DNA repair is completed. Chk1 activation requires the phosphorylation of residues in the C-terminal domain, and this is catalyzed by the ATR protein kinase. How phosphorylation of the C-terminal regulatory domain activates the N-terminal kinase domain has not been elucidated, though some studies have suggested that this phosphorylation relieves an inhibitory intramolecular interaction between the N- and C-termini. However, recent studies in the fission yeast Schizosaccharomyces pombe have revealed that there is more to Chk1 regulation than this auto-inhibition model, and we review these findings and their implication to the biology of this genome integrity determinant.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Cell cycle checkpoints: preventing an identity crisis.

          Cell cycle checkpoints are regulatory pathways that control the order and timing of cell cycle transitions and ensure that critical events such as DNA replication and chromosome segregation are completed with high fidelity. In addition, checkpoints respond to damage by arresting the cell cycle to provide time for repair and by inducing transcription of genes that facilitate repair. Checkpoint loss results in genomic instability and has been implicated in the evolution of normal cells into cancer cells. Recent advances have revealed signal transduction pathways that transmit checkpoint signals in response to DNA damage, replication blocks, and spindle damage. Checkpoint pathways have components shared among all eukaryotes, underscoring the conservation of cell cycle regulatory machinery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Universal control mechanism regulating onset of M-phase.

            P Nurse (1990)
            The onset of M-phase is regulated by a mechanism common to all eukaryotic cells. Entry into M-phase is determined by activation of the p34cdc2 protein kinase which requires p34cdc2 dephosphorylation and association with cyclin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1.

              Chk1 is an evolutionarily conserved protein kinase that regulates cell cycle progression in response to checkpoint activation. In this study, we demonstrated that agents that block DNA replication or cause certain forms of DNA damage induce the phosphorylation of human Chk1. The phosphorylated form of Chk1 possessed higher intrinsic protein kinase activity and eluted more quickly on gel filtration columns. Serines 317 and 345 were identified as sites of phosphorylation in vivo, and ATR (the ATM- and Rad3-related protein kinase) phosphorylated both of these sites in vitro. Furthermore, phosphorylation of Chk1 on serines 317 and 345 in vivo was ATR dependent. Mutants of Chk1 containing alanine in place of serines 317 and 345 were poorly activated in response to replication blocks or genotoxic stress in vivo, were poorly phosphorylated by ATR in vitro, and were not found in faster-eluting fractions by gel filtration. These findings demonstrate that the activation of Chk1 in response to replication blocks and certain forms of genotoxic stress involves phosphorylation of serines 317 and 345. In addition, this study implicates ATR as a direct upstream activator of Chk1 in human cells.
                Bookmark

                Author and article information

                Journal
                Cell Div
                Cell Division
                BioMed Central
                1747-1028
                2009
                29 April 2009
                : 4
                : 8
                Affiliations
                [1 ]Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
                [2 ]Present Address: Centro de Investigación del Cáncer, Campus Miguel de Unamuno 37007 Salamanca, Spain
                Article
                1747-1028-4-8
                10.1186/1747-1028-4-8
                2685127
                19400965
                b81115fe-a0a6-4b79-8b1b-de8a62f92af2
                Copyright © 2009 Tapia-Alveal et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 April 2009
                : 29 April 2009
                Categories
                Review

                Cell biology
                Cell biology

                Comments

                Comment on this article