Blog
About

10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Chk1

      1 , 1 , 2 , , 1

      Cell Division

      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chk1 is a serine/threonine protein kinase that is the effector of the G2 DNA damage checkpoint. Chk1 homologs have a highly conserved N-terminal kinase domain, and a less conserved C-terminal regulatory domain of ~200 residues. In response to a variety of genomic lesions, a number of proteins collaborate to activate Chk1, which in turn ensures that the mitotic cyclin-dependent kinase Cdc2 remains in an inactive state until DNA repair is completed. Chk1 activation requires the phosphorylation of residues in the C-terminal domain, and this is catalyzed by the ATR protein kinase. How phosphorylation of the C-terminal regulatory domain activates the N-terminal kinase domain has not been elucidated, though some studies have suggested that this phosphorylation relieves an inhibitory intramolecular interaction between the N- and C-termini. However, recent studies in the fission yeast Schizosaccharomyces pombe have revealed that there is more to Chk1 regulation than this auto-inhibition model, and we review these findings and their implication to the biology of this genome integrity determinant.

          Related collections

          Most cited references 47

          • Record: found
          • Abstract: found
          • Article: not found

          Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.

          The function of the ATR (ataxia-telangiectasia mutated- and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is crucial for the cellular response to replication stress and DNA damage. Here, we show that replication protein A (RPA), a protein complex that associates with single-stranded DNA (ssDNA), is required for the recruitment of ATR to sites of DNA damage and for ATR-mediated Chk1 activation in human cells. In vitro, RPA stimulates the binding of ATRIP to ssDNA. The binding of ATRIP to RPA-coated ssDNA enables the ATR-ATRIP complex to associate with DNA and stimulates phosphorylation of the Rad17 protein that is bound to DNA. Furthermore, Ddc2, the budding yeast homolog of ATRIP, is specifically recruited to double-strand DNA breaks in an RPA-dependent manner. A checkpoint-deficient mutant of RPA, rfa1-t11, is defective for recruiting Ddc2 to ssDNA both in vivo and in vitro. Our data suggest that RPA-coated ssDNA is the critical structure at sites of DNA damage that recruits the ATR-ATRIP complex and facilitates its recognition of substrates for phosphorylation and the initiation of checkpoint signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The DNA damage response: putting checkpoints in perspective.

             S Elledge,  B. Zhou (2000)
            The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development. Organisms respond to chromosomal insults by activating a complex damage response pathway. This pathway regulates known responses such as cell-cycle arrest and apoptosis (programmed cell death), and has recently been shown to control additional processes including direct activation of DNA repair networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell cycle checkpoints: preventing an identity crisis.

               S Elledge (1996)
              Cell cycle checkpoints are regulatory pathways that control the order and timing of cell cycle transitions and ensure that critical events such as DNA replication and chromosome segregation are completed with high fidelity. In addition, checkpoints respond to damage by arresting the cell cycle to provide time for repair and by inducing transcription of genes that facilitate repair. Checkpoint loss results in genomic instability and has been implicated in the evolution of normal cells into cancer cells. Recent advances have revealed signal transduction pathways that transmit checkpoint signals in response to DNA damage, replication blocks, and spindle damage. Checkpoint pathways have components shared among all eukaryotes, underscoring the conservation of cell cycle regulatory machinery.
                Bookmark

                Author and article information

                Journal
                Cell Div
                Cell Division
                BioMed Central
                1747-1028
                2009
                29 April 2009
                : 4
                : 8
                Affiliations
                [1 ]Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
                [2 ]Present Address: Centro de Investigación del Cáncer, Campus Miguel de Unamuno 37007 Salamanca, Spain
                Article
                1747-1028-4-8
                10.1186/1747-1028-4-8
                2685127
                19400965
                Copyright © 2009 Tapia-Alveal et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review

                Cell biology

                Comments

                Comment on this article