26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The anti-apoptotic effect of regucalcin is mediated through multisignaling pathways

      research-article
      Apoptosis
      Springer US
      Regucalcin, Apoptosis, Calcium signaling, Endonuclease, Caspase-3, Bcl-2, Nucleus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regucalcin (RGN/SMP30) was originally discovered in 1978 as a calcium-binding protein that does not contain the EF-hand motif of as a calcium-binding domain. The name, regucalcin, was proposed for this calcium-binding protein, which can regulate various Ca 2+-dependent enzymes activation in liver cells. The regucalcin gene is localized on the X chromosome, and its expression is mediated through many signaling factors. Regucalcin plays a pivotal role in regulation of intracellular calcium homeostasis in various cell types. Regucalcin also has a suppressive effect on various signaling pathways from the cytoplasm to nucleus in proliferating cells and regulates nuclear function in including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) synthesis. Overexpression of endogenous regucalcin was found to suppress apoptosis in modeled rat hepatoma cells and normal rat kidney proximal epithelial NRK52 cells induced by various signaling factors. Suppressive effect of regucalcin on apoptosis is related to inhibition of nuclear Ca 2+-activated DNA fragmentation, Ca 2+/calmodulin-dependent nitric oxide synthase, caspase-3, Bax, cytochrome C, protein tyrosine kinase, protein tyrosine phosphatase in the cytoplasm and nucleus. Moreover, regucalcin stimulates Bcl-2 mRNA expression and depresses enhancement of caspase-3, Apaf-1 and Akt-1 mRNAs expression. This review discusses that regucalcin plays a pivotal role in rescue of apoptotic cell death, which is mediated through various signaling factors.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3.

          We report here the purification and cDNA cloning of Apaf-1, a novel 130 kd protein from HeLa cell cytosol that participates in the cytochrome c-dependent activation of caspase-3. The NH2-terminal 85 amino acids of Apaf-1 show 21% identity and 53% similarity to the NH2-terminal prodomain of the Caenorhabditis elegans caspase, CED-3. This is followed by 320 amino acids that show 22% identity and 48% similarity to CED-4, a protein that is believed to initiate apoptosis in C. elegans. The COOH-terminal region of Apaf-1 comprises multiple WD repeats, which are proposed to mediate protein-protein interactions. Cytochrome c binds to Apaf-1, an event that may trigger the activation of caspase-3, leading to apoptosis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells.

              Sulforaphane is an isothiocyanate that is present naturally in widely consumed vegetables and has a particularly high concentration in broccoli. This compound has been shown to block the formation of tumors initiated by chemicals in the rat. Although sulforaphane has been proposed to modulate the metabolism of carcinogens, its mechanism of action remains poorly understood. We have previously demonstrated that sulforaphane inhibits the reinitiation of growth and decreases the cellular viability of quiescent human colon carcinoma cells (HT29). Moreover, the weak effect observed on differentiated CaCo2 cells suggests a specific anticancer activity for this compound. Here we investigated the effect of sulforaphane on the growth and viability of HT29 cells during their exponentially growing phase. We observed that sulforaphane induced a cell cycle arrest in a dose-dependent manner, followed by cell death. This sulforaphane-induced cell cycle arrest was correlated with an increased expression of cyclins A and B1. Moreover, we clearly demonstrated that sulforaphane induced cell death via an apoptotic process. Indeed, a large proportion of treated cells display the following: (a) translocation of phosphatidylserine from the inner layer to the outer layer of the plasma membrane; (b) typical chromatin condensation; and (c) ultrastructural modifications related to apoptotic cell death. We also showed that the expression of p53 was not changed in sulforaphane-treated cells. In contrast, whereas bcl-2 was not detected, we observed increased expression of the proapoptotic protein bax, the release of cytochrome c from the mitochondria to the cytosol, and the proteolytic cleavage of poly(ADP-ribose) polymerase. In conclusion, our results strongly suggest that in addition to the activation of detoxifying enzymes, induction of apoptosis is also involved in the sulforaphane-associated chemoprevention of cancer.
                Bookmark

                Author and article information

                Contributors
                yamamasa1155@yahoo.co.jp
                Journal
                Apoptosis
                Apoptosis
                Apoptosis
                Springer US (Boston )
                1360-8185
                1573-675X
                14 May 2013
                14 May 2013
                2013
                : 18
                : 1145-1153
                Affiliations
                Department of Hematology and Biomedical Oncology, Emory University School of Medicine, 1365 C Clifton Road, Atlanta, GA 30322 USA
                Article
                859
                10.1007/s10495-013-0859-x
                3775152
                23670020
                b94268fe-e2de-477e-bcfa-079fa350ae3b
                © The Author(s) 2013

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                Categories
                Original Paper
                Custom metadata
                © Springer Science+Business Media New York 2013

                Molecular biology
                regucalcin,apoptosis,calcium signaling,endonuclease,caspase-3,bcl-2,nucleus
                Molecular biology
                regucalcin, apoptosis, calcium signaling, endonuclease, caspase-3, bcl-2, nucleus

                Comments

                Comment on this article