36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial β-glucosidase function and metabolic activity depend on soil management in semiarid rainfed agriculture

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic and transcriptomic approaches were used to gain insights into the relationship between soil management and bacterial-mediated functions in an olive orchard agroecosystem. Four management practices were assessed in a 30-year trial in a semiarid Mediterranean region. Transcriptional activity of bacterial 16S rRNA genes increased in noncovered soils, indicating higher microbial maintenance requirements to thrive in less favorable environmental conditions. The 16S rRNA transcript:gene copy ratio confirmed this assumption and pointed toward a much higher constitutive expression from rRNA operons in noncovered soils and to even higher expression levels when spontaneous vegetation was removed chemically. As described for 16S rRNA, potential transcription did not reveal the real transcription of bacterial β-glucosidase genes, and higher gene expression in noncovered soils plus herbicides was evidenced. Since no relationship between total or soluble organic carbon and bacterial β-glucosidase transcription was found, the above hypothesis could indicate either that soluble organic carbon is not the main pool of enzyme-inducing substrates or that constitutive production of bacterial β-glucosidase enzymes increases as soil conditions worsen.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial diversity and function in soil: from genes to ecosystems.

          Soils sustain an immense diversity of microbes, which, to a large extent, remains unexplored. A range of novel methods, most of which are based on rRNA and rDNA analyses, have uncovered part of the soil microbial diversity. The next step in the era of microbial ecology is to extract genomic, evolutionary and functional information from bacterial artificial chromosome libraries of the soil community genomes (the metagenome). Sophisticated analyses that apply molecular phylogenetics, DNA microarrays, functional genomics and in situ activity measurements will provide huge amounts of new data, potentially increasing our understanding of the structure and function of soil microbial ecosystems, and the interactions that occur within them. This review summarizes the recent progress in studies of soil microbial communities with focus on novel methods and approaches that provide new insight into the relationship between phylogenetic and functional diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            rRNA operon copy number reflects ecological strategies of bacteria.

            Although natural selection appears to favor the elimination of gene redundancy in prokaryotes, multiple copies of each rRNA-encoding gene are common on bacterial chromosomes. Despite this conspicuous deviation from single-copy genes, no phenotype has been consistently associated with rRNA gene copy number. We found that the number of rRNA genes correlates with the rate at which phylogenetically diverse bacteria respond to resource availability. Soil bacteria that formed colonies rapidly upon exposure to a nutritionally complex medium contained an average of 5.5 copies of the small subunit rRNA gene, whereas bacteria that responded slowly contained an average of 1.4 copies. In soil microcosms pulsed with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), indigenous populations of 2,4-D-degrading bacteria with multiple rRNA genes ( = 5.4) became dominant, whereas populations with fewer rRNA genes ( = 2.7) were favored in unamended controls. These findings demonstrate phenotypic effects associated with rRNA gene copy number that are indicative of ecological strategies influencing the structure of natural microbial communities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microorganisms and climate change: terrestrial feedbacks and mitigation options.

              Microbial processes have a central role in the global fluxes of the key biogenic greenhouse gases (carbon dioxide, methane and nitrous oxide) and are likely to respond rapidly to climate change. Whether changes in microbial processes lead to a net positive or negative feedback for greenhouse gas emissions is unclear. To improve the prediction of climate models, it is important to understand the mechanisms by which microorganisms regulate terrestrial greenhouse gas flux. This involves consideration of the complex interactions that occur between microorganisms and other biotic and abiotic factors. The potential to mitigate climate change by reducing greenhouse gas emissions through managing terrestrial microbial processes is a tantalizing prospect for the future.
                Bookmark

                Author and article information

                Journal
                Ecol Evol
                Ecol Evol
                ece3
                Ecology and Evolution
                Blackwell Publishing Ltd (Oxford, UK )
                2045-7758
                2045-7758
                April 2012
                : 2
                : 4
                : 727-731
                Affiliations
                simpleDepartment of Environmental Protection, Estación Experimental del Zaidín (EEZ), CSIC Profesor Albareda 1, 18008 Granada, Spain
                Author notes
                Emilio Benitez, Department of Environmental Protection, Estación Experimental del Zaidín (EEZ), CSIC, Profesor Albareda 1, 18008 Granada, Spain. Tel: +34958181600; Fax: +34958129600; E-mail: emilio.benitez@ 123456eez.csic.es

                Funded by ERDF-cofinanced grant CGL2009-07907 from the Spanish Ministry of Science of Innovation.

                Article
                10.1002/ece3.88
                3399195
                22837821
                ba05f3b1-dbdb-4619-b88b-99099ab347c9
                © 2012 The Authors. Published by Blackwell Publishing Ltd.

                This is an open access article under the terms of the Creative Commons Attribution Non Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 07 November 2011
                : 09 November 2011
                Categories
                Original Research

                Evolutionary Biology
                ecosystem services,transcriptomics,genomics,rainfed farming,semiarid climate,β-glucosidase

                Comments

                Comment on this article