Blog
About

53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ion antiport accelerates photosynthetic acclimation in fluctuating light environments

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K + efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3’s activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO 2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light.

          Abstract

          Plants must respond rapidly to unpredictable variations in light intensity to maximize photosynthetic efficiency. Here Armbruster et al. identify a potassium antiporter that is critical for accelerating proton fluxes across thylakoid membranes and minimizing energy loss in fluctuating light conditions.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: found
          • Article: not found

          Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.

          The Agrobacterium vacuum infiltration method has made it possible to transform Arabidopsis thaliana without plant tissue culture or regeneration. In the present study, this method was evaluated and a substantially modified transformation method was developed. The labor-intensive vacuum infiltration process was eliminated in favor of simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Sucrose and surfactant were critical to the success of the floral dip method. Plants inoculated when numerous immature floral buds and few siliques were present produced transformed progeny at the highest rate. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary, and Agrobacterium could be applied to plants at a range of cell densities. Repeated application of Agrobacterium improved transformation rates and overall yield of transformants approximately twofold. Covering plants for 1 day to retain humidity after inoculation also raised transformation rates twofold. Multiple ecotypes were transformable by this method. The modified method should facilitate high-throughput transformation of Arabidopsis for efforts such as T-DNA gene tagging, positional cloning, or attempts at targeted gene replacement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein structure prediction on the Web: a case study using the Phyre server.

            Determining the structure and function of a novel protein is a cornerstone of many aspects of modern biology. Over the past decades, a number of computational tools for structure prediction have been developed. It is critical that the biological community is aware of such tools and is able to interpret their results in an informed way. This protocol provides a guide to interpreting the output of structure prediction servers in general and one such tool in particular, the protein homology/analogy recognition engine (Phyre). New profile-profile matching algorithms have improved structure prediction considerably in recent years. Although the performance of Phyre is typical of many structure prediction systems using such algorithms, all these systems can reliably detect up to twice as many remote homologies as standard sequence-profile searching. Phyre is widely used by the biological community, with >150 submissions per day, and provides a simple interface to results. Phyre takes 30 min to predict the structure of a 250-residue protein.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana

                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                13 November 2014
                : 5
                Affiliations
                [1 ]Department of Plant Biology, Carnegie Institution for Science , 260 Panama Street, Stanford, California 94305, USA
                [2 ]Plant Research Laboratory, Michigan State University, R106 Plant Biology Building , East Lansing, Michigan 48824-1312, USA
                [3 ]Dpto de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas , c/. Profesor Albareda 1, 18008 Granada, Spain
                [4 ]Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1, 40225 Düsseldorf, Germany
                [5 ]Department of Global Ecology, Carnegie Institution for Science , 260 Panama Street, Stanford, California 94305, USA
                ncomms6439
                10.1038/ncomms6439
                4243252
                25451040
                Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article