5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CircKPNB1 mediates a positive feedback loop and promotes the malignant phenotypes of GSCs via TNF-α/NF-κB signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioma stem cells (GSCs) are a special kind of cells in GBM showing tumor initiation, self-renewal, and multi-lineage differentiation abilities. Finding novel circRNAs related to GSCs is of great significance for the study of glioma. qPCR, western blotting, and immunohistochemistry were used to detect the expression levels of circKPNB1, SPI1, DGCR8, and TNF-α. The expression of these molecules in GSCs was regulated by lentiviral-based infection. RNA immunoprecipitation assay, RNA pull-down, dual-luciferase reporter, and chromatin immunoprecipitation assays were used to study the direct regulation mechanisms among these molecules. All the MTS, EDU, transwell, neurosphere formation assays, ELDA assays, and xenograft experiments were used to detect the malignant phenotype of GSCs. We found a novel circRNA circKPNB1 was overexpressed in GBM and associated with GBM patients’ poor prognosis. CircKPNB1 overexpression can promote the cell viabilities, proliferation, invasion, neurospheres formation abilities, and stemness of GSCs. Mechanistically, circKPNB1 regulates the protein stability and nuclear translocation of SPI1. SPI1 promotes the malignant phenotype of GSCs via TNF-α mediated NF-κB signaling. SPI1 can also transcriptionally upregulate DGCR8 expression, and the latter can maintain the stability of circKPNB1 and forms a positive feedback loop among DGCR8, circKPNB1 and SPI1. Our study found circKPNB1 was a novel oncogene in GBM and of great significance in the diagnosis and prognosis prediction of GBM and maybe a novel target for molecular targeted therapy.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays.

          ELDA is a software application for limiting dilution analysis (LDA), with particular attention to the needs of stem cell assays. It is the first limiting dilution analysis software to provide meaningful confidence intervals for all LDA data sets, including those with 0% or 100% responses. Other features include a test of the adequacy of the single-hit hypothesis, tests for frequency differences between multiple data sets, and the ability to take advantage of cases where the number of cells in the sample is counted exactly. A webtool at http://bioinf.wehi.edu.au/software/elda/ provides an easy user interface.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis

            Abstract Background Circular RNAs (circRNAs) are RNA transcripts that are widespread in the eukaryotic genome. Recent evidence indicates that circRNAs play important roles in tissue development, gene regulation, and carcinogenesis. However, whether circRNAs encode functional proteins remains elusive, although translation of several circRNAs was recently reported. Methods CircRNA deep sequencing was performed by using 10 pathologically diagnosed glioblastoma samples and their paired adjacent normal brain tissues. Northern blotting, Sanger sequencing, antibody, and liquid chromatograph Tandem Mass Spectrometer were used to confirm the existence of circ-FBXW7 and its encoded protein in in two cell lines. Lentivirus-transfected stable U251 and U373 cells were used to assess the biological functions of the novel protein in vitro and in vivo (five mice per group). Clinical implications of circ-FBXW7 were assessed in 38 pathologically diagnosed glioblastoma samples and their paired periphery normal brain tissues by using quantitative polymerase chain reaction (two-sided log-rank test). Results Circ-FBXW7 is abundantly expressed in the normal human brain (reads per kilobase per million mapped reads [RPKM] = 9.31). The spanning junction open reading frame in circ-FBXW7 driven by internal ribosome entry site encodes a novel 21-kDa protein, which we termed FBXW7-185aa. Upregulation of FBXW7-185aa in cancer cells inhibited proliferation and cell cycle acceleration, while knockdown of FBXW7-185aa promoted malignant phenotypes in vitro and in vivo. FBXW7-185aa reduced the half-life of c-Myc by antagonizing USP28-induced c-Myc stabilization. Moreover, circ-FBXW7 and FBXW7-185aa levels were reduced in glioblastoma clinical samples compared with their paired tumor-adjacent tissues (P < .001). Circ-FBXW7 expression positively associated with glioblastoma patient overall survival (P = .03). Conclusions Endogenous circRNA encodes a functional protein in human cells, and circ-FBXW7 and FBXW7-185aa have potential prognostic implications in brain cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CircSMARCA5 Regulates VEGFA mRNA Splicing and Angiogenesis in Glioblastoma Multiforme Through the Binding of SRSF1

              Circular RNAs are a large group of RNAs whose cellular functions are still being investigated. We recently proposed that circSMARCA5 acts as sponge for the splicing factor Serine and Arginine Rich Splicing Factor 1 (SRSF1) in glioblastoma multiforme (GBM). After demonstrating by RNA immunoprecipitation a physical interaction between SRFS1 and circSMARCA5, we assayed by real-time PCR in a cohort of 31 GBM biopsies and 20 unaffected brain parenchyma controls (UC) the expression of total, pro-angiogenic (Iso8a) and anti-angiogenic (Iso8b) mRNA isoforms of Vascular Endothelial Growth Factor A (VEGFA), a known splicing target of SRSF1. The Iso8a to Iso8b ratio: (i) increased in GBM biopsies with respect to UC (p-value < 0.00001); (ii) negatively correlated with the expression of circSMARCA5 (r-value = −0.46, p-value = 0.006); (iii) decreased in U87-MG overexpressing circSMARCA5 with respect to negative control (p-value = 0.0055). Blood vascular microvessel density, estimated within the same biopsies, negatively correlated with the expression of circSMARCA5 (r-value = −0.59, p-value = 0.00001), while positively correlated with that of SRSF1 (r-value = 0.38, p-value = 0.00663) and the Iso8a to Iso8b ratio (r-value = 0.41, p-value = 0.0259). Kaplan-Meier survival analysis showed that GBM patients with low circSMARCA5 expression had lower overall and progression free survival rates than those with higher circSMARCA5 expression (p-values = 0.033, 0.012, respectively). Our data convincingly suggest that circSMARCA5 is an upstream regulator of pro- to anti-angiogenic VEGFA isoforms ratio within GBM cells and a highly promising GBM prognostic and prospective anti-angiogenic molecule.
                Bookmark

                Author and article information

                Contributors
                sjwk713@163.com
                damingcui_ns@163.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                9 August 2022
                9 August 2022
                August 2022
                : 13
                : 8
                : 697
                Affiliations
                [1 ]GRID grid.24516.34, ISNI 0000000123704535, Department of Neurosurgery, Shanghai Tenth People’s Hospital, , Tongji University School of Medicine, ; Shanghai, 200072 China
                [2 ]GRID grid.443573.2, ISNI 0000 0004 1799 2448, Department of Neurosurgery, , Taihe Affiliated Hospital of Hubei University of Medicine, ; Shiyan, 442000 China
                Author information
                http://orcid.org/0000-0001-9627-4484
                http://orcid.org/0000-0002-3782-5802
                Article
                5149
                10.1038/s41419-022-05149-1
                9363451
                35945192
                bb23fce9-d6cf-4628-91c1-7e1fb8970b24
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 June 2022
                : 25 July 2022
                : 28 July 2022
                Funding
                Funded by: China Postdoctoral Science Foundation (No. 267285), Shanghai Post-doctoral Excellence Program (No. 2021336) and the Shanghai Sailing Program (No. 21YF1449900).
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 82101439
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Cell biology
                cns cancer
                Cell biology
                cns cancer

                Comments

                Comment on this article