2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The evolution of partial reproductive isolation as an adaptive optimum

      1 , 2
      Evolution
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Decades of theoretical work on the evolution of adaptive prezygotic isolation have led to an interesting finding-namely that stable partial reproductive isolation is a relatively common outcome. This conclusion is generally lost, however, in the desire to pinpoint when exactly speciation occurs. Here, we argue that the evolution of partial reproductive isolation is of great interest in its own right and matches empirical findings that ongoing hybridization is taxonomically widespread. We present the mechanisms by which partial reproductive isolation can be a stable evolutionary endpoint, concentrating on insights from theoretical studies. We focus not on cases in which hybridization results from constraints imposed by ongoing migration or mutation, but on the intriguing idea that partial reproductive isolation may instead be an adaptive optimum. We identify three general categories of selective mechanisms that can lead to partial reproductive isolation: context-dependent hybrid advantage, indirect selection due to the varying actions of sexual selection in different geographic contexts, and a balance of costs of choosiness with indirect selection for stronger mating preferences. By any of these mechanisms, stable partial reproductive isolation can potentially provide a robust evolutionary alternative to either complete speciation or population fusion.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Hybridization and speciation.

          Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genetics of inbreeding depression.

            Inbreeding depression - the reduced survival and fertility of offspring of related individuals - occurs in wild animal and plant populations as well as in humans, indicating that genetic variation in fitness traits exists in natural populations. Inbreeding depression is important in the evolution of outcrossing mating systems and, because intercrossing inbred strains improves yield (heterosis), which is important in crop breeding, the genetic basis of these effects has been debated since the early twentieth century. Classical genetic studies and modern molecular evolutionary approaches now suggest that inbreeding depression and heterosis are predominantly caused by the presence of recessive deleterious mutations in populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On the origin of species by sympatric speciation.

              Understanding speciation is a fundamental biological problem. It is believed that many species originated through allopatric divergence, where new species arise from geographically isolated populations of the same ancestral species. In contrast, the possibility of sympatric speciation (in which new species arise without geographical isolation) has often been dismissed, partly because of theoretical difficulties. Most previous models analysing sympatric speciation concentrated on particular aspects of the problem while neglecting others. Here we present a model that integrates a novel combination of different features and show that sympatric speciation is a likely outcome of competition for resources. We use multilocus genetics to describe sexual reproduction in an individual-based model, and we consider the evolution of assortative mating (where individuals mate preferentially with like individuals) depending either on an ecological character affecting resource use or on a selectively neutral marker trait. In both cases, evolution of assortative mating often leads to reproductive isolation between ecologically diverging subpopulations. When assortative mating depends on a marker trait, and is therefore not directly linked to resource competition, speciation occurs when genetic drift breaks the linkage equilibrium between the marker and the ecological trait. Our theory conforms well with mounting empirical evidence for the sympatric origin of many species.
                Bookmark

                Author and article information

                Journal
                Evolution
                Evolution
                Wiley
                0014-3820
                1558-5646
                November 25 2019
                November 25 2019
                Affiliations
                [1 ]Department of BiologyUniversity of North Carolina Chapel Hill North Carolina 27599
                [2 ]Mathematics and BioSciences Group, Faculty of Mathematics and Max F. Perutz LaboratoriesUniversity of Vienna Vienna Austria
                Article
                10.1111/evo.13880
                31721186
                bbb697ef-d14a-4f05-8edc-e079af24d794
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article