45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Perinatal Lead Exposure Alters Gut Microbiota Composition and Results in Sex-specific Bodyweight Increases in Adult Mice

      , , , , , ,
      Toxicological Sciences
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heavy metal pollution is a principle source of environmental contamination. Epidemiological and animal data suggest that early life lead (Pb) exposure results in critical effects on epigenetic gene regulation and child and adult weight trajectories. Using a mouse model of human-relevant exposure, we investigated the effects of perinatal Pb exposure on gut microbiota in adult mice, and the link between gut microbiota and bodyweight changes. Following Pb exposure during gestation and lactation via maternal drinking water, bodyweight in A(vy) strain wild-type non-agouti (a/a) offspring was tracked through adulthood. Gut microbiota of adult mice were characterized by deep DNA sequencing of bacterial 16S ribosomal RNA genes. Data analyses were stratified by sex and adjusted for litter effects. A Bayesian variable selection algorithm was used to analyze associations between bacterial operational taxonomic units and offspring adult bodyweight. Perinatal Pb exposure was associated with increased adult bodyweight in male (P < .05) but not in female offspring (P = .24). Cultivable aerobes decreased and anaerobes increased in Pb-exposed offspring (P < .005 and P < .05, respectively). Proportions of the 2 predominant phyla (Bacteroidetes and Firmicutes) shifted inversely with Pb exposure, and whole bacterial compositions were significantly different (analysis of molecular variance, P < .05) by Pb exposure without sex bias. In males, changes in gut microbiota were highly associated with adult bodyweight (P = .028; effect size = 2.59). Thus, perinatal Pb exposure results in altered adult gut microbiota regardless of sex, and these changes are highly correlated with increased bodyweight in males. Adult gut microbiota can be shaped by early exposures and may contribute to disease risks in a sex-specific manner.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data

          Next-generation sequencing techniques, and PhyloChip, have made simultaneous phylogenetic analyses of hundreds of microbial communities possible. Insight into community structure has been limited by the inability to integrate and visualize such vast datasets. Fast UniFrac overcomes these issues, allowing integration of larger numbers of sequences and samples into a single analysis. Its new array-based implementation offers orders of magnitude improvements over the original version. New 3D visualization of principal coordinates analysis (PCoA) results, with the option to view multiple coordinate axes simultaneously, provides a powerful way to quickly identify patterns that relate vast numbers of microbial communities. We demonstrate the potential of Fast UniFrac using examples from three data types: Sanger-sequencing studies of diverse free-living and animal-associated bacterial assemblages and from the gut of obese humans as they diet, pyrosequencing data integrated from studies of the human hand and gut, and PhyloChip data from a study of citrus pathogens. We show that a Fast UniFrac analysis using a reference tree recaptures patterns that could not be detected without considering phylogenetic relationships and that Fast UniFrac, coupled with BLAST-based sequence assignment, can be used to quickly analyze pyrosequencing runs containing hundreds of thousands of sequences, revealing patterns relating human and gut samples. Finally, we show that the application of Fast UniFrac to PhyloChip data could identify well-defined subcategories associated with infection. Together, these case studies point the way towards a broad range of applications and demonstrate some of the new features of Fast UniFrac.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developmental plasticity and human health.

            Many plants and animals are capable of developing in a variety of ways, forming characteristics that are well adapted to the environments in which they are likely to live. In adverse circumstances, for example, small size and slow metabolism can facilitate survival, whereas larger size and more rapid metabolism have advantages for reproductive success when resources are more abundant. Often these characteristics are induced in early life or are even set by cues to which their parents or grandparents were exposed. Individuals developmentally adapted to one environment may, however, be at risk when exposed to another when they are older. The biological evidence may be relevant to the understanding of human development and susceptibility to disease. As the nutritional state of many human mothers has improved around the world, the characteristics of their offspring--such as body size and metabolism--have also changed. Responsiveness to their mothers' condition before birth may generally prepare individuals so that they are best suited to the environment forecast by cues available in early life. Paradoxically, however, rapid improvements in nutrition and other environmental conditions may have damaging effects on the health of those people whose parents and grandparents lived in impoverished conditions. A fuller understanding of patterns of human plasticity in response to early nutrition and other environmental factors will have implications for the administration of public health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accurate determination of microbial diversity from 454 pyrosequencing data.

              We present an algorithm, PyroNoise, that clusters the flowgrams of 454 pyrosequencing reads using a distance measure that models sequencing noise. This infers the true sequences in a collection of amplicons. We pyrosequenced a known mixture of microbial 16S rDNA sequences extracted from a lake and found that without noise reduction the number of operational taxonomic units is overestimated but using PyroNoise it can be accurately calculated.
                Bookmark

                Author and article information

                Journal
                Toxicological Sciences
                Toxicol. Sci.
                Oxford University Press (OUP)
                1096-6080
                1096-0929
                May 25 2016
                June 2016
                June 2016
                March 08 2016
                : 151
                : 2
                : 324-333
                Article
                10.1093/toxsci/kfw046
                4880136
                26962054
                bc091b1f-11c0-4cf9-867a-3ec388516c99
                © 2016
                History

                Comments

                Comment on this article