19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10 −3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction ( eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer.

          Author Summary

          Organisms strike a balance between genetic continuity and change. Most cells are well adapted to their niches and therefore invest heavily in mechanisms that maintain accurate DNA replication. When cell populations are confronted with changing environmental conditions, “mutator” clones with high mutation rates emerge and readily adapt to the new conditions by rapidly acquiring beneficial mutations. However, deleterious mutations also accumulate, raising the question: what level of mutational burden can cell populations sustain before collapsing? Here we experimentally determine the maximal mutation rate in haploid yeast. We observe that yeast can withstand a 1,000-fold increase in mutation rate without losing colony forming capacity. Yet no strains survive a 10,000-fold increase in mutation rate. Escape mutants with an “anti-mutator” phenotype frequently emerge from cell populations undergoing this error-induced extinction. The diversity of antimutator changes suggests that strong mutator phenotypes in nature may be inherently transient, ensuring that rapid adaptation is followed by genetic attenuation which preserves the beneficial, adaptive mutations. These observations are relevant to microbial populations during infection as well as the somatic evolution of cancer cells.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae.

          We have constructed and tested a dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA. This kanMX module contains the known kanr open reading-frame of the E. coli transposon Tn903 fused to transcriptional and translational control sequences of the TEF gene of the filamentous fungus Ashbya gossypii. This hybrid module permits efficient selection of transformants resistant against geneticin (G418). We also constructed a lacZMT reporter module in which the open reading-frame of the E. coli lacZ gene (lacking the first 9 codons) is fused at its 3' end to the S. cerevisiae ADH1 terminator. KanMX and the lacZMT module, or both modules together, were cloned in the center of a new multiple cloning sequence comprising 18 unique restriction sites flanked by Not I sites. Using the double module for constructions of in-frame substitutions of genes, only one transformation experiment is necessary to test the activity of the promotor and to search for phenotypes due to inactivation of this gene. To allow for repeated use of the G418 selection some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10(-3)-10(-4). The 1.4 kb kanMX module was also shown to be very useful for PCR based gene disruptions. In an experiment in which a gene disruption was done with DNA molecules carrying PCR-added terminal sequences of only 35 bases homology to each target site, all twelve tested geneticin-resistant colonies carried the correctly integrated kanMX module.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new efficient gene disruption cassette for repeated use in budding yeast.

            The dominant kanr marker gene plays an important role in gene disruption experiments in budding yeast, as this marker can be used in a variety of yeast strains lacking the conventional yeast markers. We have developed a loxP-kanMX-loxP gene disruption cassette, which combines the advantages of the heterologous kanr marker with those from the Cre-lox P recombination system. This disruption cassette integrates with high efficiency via homologous integration at the correct genomic locus (routinely 70%). Upon expression of the Cre recombinase the kanMX module is excised by an efficient recombination between the loxP sites, leaving behind a single loxP site at the chromosomal locus. This system allows repeated use of the kanr marker gene and will be of great advantage for the functional analysis of gene families.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rates of spontaneous mutation.

              Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2011
                October 2011
                6 October 2011
                13 October 2011
                : 7
                : 10
                : e1002282
                Affiliations
                [1]Department of Pathology, University of Washington, Seattle, Washington, United States of America
                The University of North Carolina at Chapel Hill, United States of America
                Author notes
                [¤a]

                Current address: Abbott Laboratories, Abbott Park, Illinois, United States of America

                [¤b]

                Current address: Genentech, South San Francisco, California, United States of America

                Conceived and designed the experiments: AJH MO NAL LNW MS RAS BDP. Performed the experiments: AJH MO NAL JME LNW MS. Analyzed the data: AJH MO NAL JME MS RAS BDP. Contributed reagents/materials/analysis tools: AJH MO NAL LNW JME MS RAS BDP. Wrote the paper: AJH RAS BDP.

                Article
                PGENETICS-D-11-00826
                10.1371/journal.pgen.1002282
                3188538
                22022273
                bcb6dedf-6824-449a-827d-e23d6c134abe
                Herr et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 April 2011
                : 21 July 2011
                Page count
                Pages: 16
                Categories
                Research Article
                Biology
                Biochemistry
                Genetics
                Genetic Mutation
                Mutagenesis
                Mutation Types
                Mutational Hypotheses
                Cancer Genetics
                Gene Function

                Genetics
                Genetics

                Comments

                Comment on this article