3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Applications of Chitosan and its Derivatives in Skin and Soft Tissue Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chitosan and its derivatives are bioactive molecules that have recently been used in various fields, especially in the medical field. The antibacterial, antitumor, and immunomodulatory properties of chitosan have been extensively studied. Chitosan can be used as a drug-delivery carrier in the form of hydrogels, sponges, microspheres, nanoparticles, and thin films to treat diseases, especially those of the skin and soft tissue such as injuries and lesions of the skin, muscles, blood vessels, and nerves. Chitosan can prevent and also treat soft tissue diseases by exerting diverse biological effects such as antibacterial, antitumor, antioxidant, and tissue regeneration effects. Owing to its antitumor properties, chitosan can be used as a targeted therapy to treat soft tissue tumors. Moreover, owing to its antibacterial and antioxidant properties, chitosan can be used in the prevention and treatment of soft tissue infections. Chitosan can stop the bleeding of open wounds by promoting platelet agglutination. It can also promote the regeneration of soft tissues such as the skin, muscles, and nerves. Drug-delivery carriers containing chitosan can be used as wound dressings to promote wound healing. This review summarizes the structure and biological characteristics of chitosan and its derivatives. The recent breakthroughs and future trends of chitosan and its derivatives in therapeutic effects and drug delivery functions including anti-infection, promotion of wound healing, tissue regeneration and anticancer on soft tissue diseases are elaborated.

          Related collections

          Most cited references166

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications

          This review describes the most common methods for recovery of chitin from marine organisms. In depth, both enzymatic and chemical treatments for the step of deproteinization are compared, as well as different conditions for demineralization. The conditions of chitosan preparation are also discussed, since they significantly impact the synthesis of chitosan with varying degree of acetylation (DA) and molecular weight (MW). In addition, the main characterization techniques applied for chitin and chitosan are recalled, pointing out the role of their solubility in relation with the chemical structure (mainly the acetyl group distribution along the backbone). Biological activities are also presented, such as: antibacterial, antifungal, antitumor and antioxidant. Interestingly, the relationship between chemical structure and biological activity is demonstrated for chitosan molecules with different DA and MW and homogeneous distribution of acetyl groups for the first time. In the end, several selected pharmaceutical and biomedical applications are presented, in which chitin and chitosan are recognized as new biomaterials taking advantage of their biocompatibility and biodegradability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications

            Many different iron oxide nanoparticles have been evaluated over the years, for many different biomedical applications. We here summarize the synthesis, surface functionalization and characterization of iron oxide nanoparticles, as well as their (pre-) clinical use in diagnostic, therapeutic and theranostic settings. Diagnostic applications include liver, lymph node, inflammation and vascular imaging, employing mostly magnetic resonance imaging but recently also magnetic particle imaging. Therapeutic applications encompass iron supplementation in anemia and advanced cancer treatments, such as modulation of macrophage polarization, magnetic fluid hyperthermia and magnetic drug targeting. Because of their properties, iron oxide nanoparticles are particularly useful for theranostic purposes. Examples of such setups, in which diagnosis and therapy are intimately combined and in which iron oxide nanoparticles are used, are image-guided drug delivery, image-guided and microbubble-mediated opening of the blood-brain barrier, and theranostic tissue engineering. Together, these directions highlight the versatility and the broad applicability of iron oxide nanoparticles, and they indicate that multiple iron oxide nanoparticle-based materials will be integrated in future medical practice.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antibacterial Activity of Silver Nanoparticles: Structural Effects

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                02 May 2022
                2022
                : 10
                : 894667
                Affiliations
                [1] 1 Department of Hand and Foot Surgery , The First Hospital of Jilin University , Changchun, China
                [2] 2 Laboratory Animal Center , College of Animal Science , Jilin University , Changchun, China
                [3] 3 Department of Pharmacy , Changchun University of Chinese Medicine , Changchun, China
                Author notes

                Edited by: Yongsheng Yu, Tongji University, China

                Reviewed by: Guangqi Song, Fudan University, China

                Guanyu Chen, Sun Yat-sen University, China

                *Correspondence: Ziping Jiang, waterjzp@ 123456jlu.edu.cn ; Bin Liu, l_bin@ 123456jlu.edu.cn
                [ † ]

                These authors have contributed equally to this work

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                894667
                10.3389/fbioe.2022.894667
                9108203
                35586556
                bcd44bf7-592b-4fd9-a4c4-39d167fdb5ca
                Copyright © 2022 Xia, Wang, Liu, Su, Jin, Wang, Han, Jiang and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 March 2022
                : 18 April 2022
                Categories
                Bioengineering and Biotechnology
                Mini Review

                chitosan,soft tissue disease,biological property,drug-delivery carrier,regenerative medicine

                Comments

                Comment on this article